
Software Documentation
NetDCUx

Native SPI V1 – Software Interface for .NET

Version 1.00
2009-02-28

© F&S Elektronik Systeme GmbH

Untere Waldplätze 23

D-70569 Stuttgart

Fon: +49(0)711-123722-0

Fax: +49(0)711 – 123722-99

History

Date V Platform A,M,R Chapter Description Au

2015-07-09 1.00 all M * Changed to new corporate design JG

V Version

A,M,R Added, Modif ied, Removed

Au Author

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 1 of 29

Table of Contents

History 2

Table of Contents 1

1 Introduction 2

2 Installing the NSPI Software Driver 3

2.1 Installation with the CAB file ... 3
2.2 Manual installation .. 4
2.3 Installing the .NET library NativeSPI-V1.dll .. 5

3 The NSPI Driver in Applications 6

4 The NspiPortV1 class 7

4.1 NspiPortV1() (Construction) .. 8
4.2 HandleErrorsViaReturn()... 9
4.3 Exchange() .. 10
4.4 Receive() ... 12
4.5 Send() .. 14
4.6 Transfer() ... 16
4.7 enum NspiAccess.. 18
4.8 enum APIError... 19

5 The NspiPortV1Exception class 20

5.1 NspiPortV1Exception() (Construction).. 21

6 Sample Program 25

7 Appendix 28

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 2 of 29

1 Introduction

Some of the NetDCU, PicoMOD and PicoCOM boards support the so-called Native SPI, or
NSPI for short. This is an SPI bus directly implemented by some dedicated hardware of the
board, usually the micro-controller itself. This document describes, how the appropriate
device driver is installed and how this SPI bus can be used in applications written in a

Microsoft .NET programming language like C# or Visual Basic.

The main device driver only provides a Win32 interface. To use this driver from .NET, an

additional library called NativeSPI-V1.dll is required. This library provides some useful
data types and classes to access the NSPI driver interface in a comfortable way from the

.NET environment. For example we introduce the wrapper class NspiPort for access and

a special exception class NSpiPortException, allowing easy error handling.
In the following chapters, the programming concept of NSPI, all functions and all data types

provided by NativeSPI-V1.dll are explained. We also have included a sample program,

showing the usage of the NspiPortV1 class.

Remark

In the remaining document we’ll use the term “NetDCU” as generic reference to all our
Windows CE boards. This should also include PicoMOD and PicoCOM boards, even if they
are not mentioned especially.

NativeSPI-V1.dll can only access the V1.x interface of the NSPI driver. A driver for V2.x

is available soon.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 3 of 29

2 Installing the NSPI Software Driver

The NSPI driver is usually installed as SPI1:. We provide a special Windows Cabinet File
(“CAB-File”) for an automatic installation, but you can also do the installation manually.

2.1 Installation with the CAB file

The easiest way to install the driver is to use the provided Windows Cabinet File nspi.cab.
Just copy this file to the board (e.g. to the root directory) and double click on it. This will

automatically install the driver as SPI1:. When asked for a destination directory, just click

OK. All registry settings will be done for the default values and the CAB file will vanish again
when done.
If you don’t have access to a mouse or touch panel on the NetDCU, or if you even don’t use
a display at all, you can also do the CAB file installation on the command line. Just type the
following command:
wceload /noui nspi.cab

If you need settings other than the defaults, you can edit the registry values anytime after
installation is complete.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 4 of 29

2.2 Manual installation

You can also do the installation by hand. This requires setting some registry entries.
Installation of the NSPI driver takes place in the registry under
[HKLM\Drivers\BuiltIn\SPI1]

Entry Type Value Description

Dll String nspi.dll Driver DLL

FriendlyNam

e

String Native

SPI

driver

Description

Prefix String SPI For SPI1:

Index DWOR
D

1 For SPI1:

Order DWOR
D

101 Load sequence

ClockFreq DWOR
D

200000 in Hz

SPIMode DWOR
D

0 SPI clock mode

Priority256 DWOR
D

103 Thread priority

DriverMetho

d
DWOR
D

0 IRQ, Polling,
DMA

TxChannel DWOR
D

3 Transmit DMA
channel *)

RxChannel DWOR
D

4 Receive DMA
channel *)

Debug DWOR
D

0 Debug verbosity

*) Only on PicoMOD3 when using DriverMethod 2 (DMA)

Most of the values will get meaningful defaults if omitted, only those values highlighted in
grey above really have to be given.
Please refer to the document “NetDCU/PicoMOD: NSPI – Native SPI Support” for further
installation details of the driver.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 5 of 29

2.3 Installing the .NET library NativeSPI-V1.dll

To use the NativeSPI-V1.dll library for .NET, you have to copy it to your PC, for
example to your Visual Studio project directory, and add a reference to it in your project. This
can be done in two ways:
1. In the solution explorer, right click on the “References” entry and select “Add

Reference...”
2. In menu “Project” select “Add Reference...”
In both cases you will be presented with a dialog having several tabs. Click on the tab

“Browse” and search for the NativeSPI-V1.dll in your project directory. After clicking
OK, entry “NativeSPI-V1” will appear in the References section of the Solution Explorer.

If the NspiPortV1 class is not automatically recognized in the editor immediately, close and
re-open your solution. Now the new objects should be supported by the editor.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 6 of 29

3 The NSPI Driver in Applications

The NSPI driver is designed to work as master, therefore the connected device must be
slave. This means that MOSI, CLK and CS are output signals and MISO is an input signal.
The NetDCU will generate the clock and chip select signals.

The driver uses the common file interface, and there mostly the DeviceIoControl()
function to talk to the SPI bus.
When communicating to an SPI device, the transmission always goes in both directions at
the same time. With every clock cycle, one bit is sent via the MOSI line to the device and
one bit is received via the MISO line from the device. Therefore after one byte is sent, also
one byte is received. This allows for the following transmission types.

Transmission Description

Send-only Meaningful data is only transferred via
the MOSI line. The received bytes are
discarded.

Receive-only Meaningful data is only transferred via
the MISO line. The data sent on the
MOSI line is ignored by the device and

does not matter. We send 0xFF as
dummy values.

Send and
receive

Both directions carry meaningful data.
The received data is stored at a
different place than the sent data.

Exchange Both directions carry meaningful data.
The received data is stored at the
same place as the sent data, replacing
it.

Before the actual data transmission, most devices require some command to determine
what to do with the data. For example a memory device will require information whether to
read or write and an address where to start. This command part is a send-only phase, i.e.
the bytes received during this phase are discarded.
Therefore all transmission functions of the NSPI driver support a command phase, that is
performed before the actual data transfer takes place. If the device does not require this
command phase, you can leave it empty. The .NET driver exposes an overloaded version of
each transmission function with and without command bytes.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 7 of 29

4 The NspiPortV1 class

The NspiPortV1 class defines all functions needed for accessing the NSPI bus, including

some constants and enumerations. The class is embedded in the FS.NetDCU namespace,

so the fully qualified name is FS.NetDCU.NspiPortV1.

Error Handling
As with most low-level Windows drivers written in C, it is common for a function to return an
error or success value as the direct return value and return any requested data in data
structures passed by reference as parameters. Contrary to this, modern languages like C#
usually use asynchronous exceptions to report failure and therefore can use the return value
directly to transfer the requested data, usually as objects.

With the NspiPortV1 class, we let you choose what behaviour you want. By default any

error in a NspiPortV1 function will throw a NspiPortV1Exception. However you can

change this behaviour by calling HandleErrorsViaReturn() immediately after

constructing the NspiPortV1 object. This switches this instance to the C style convention
and then each function returns 0 for success and an error value different from 0 for failure.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 8 of 29

4.1 NspiPortV1() (Construction)

Signature:
NspiPortV1(string FileName, NspiAccess access)

Parameters:

FileName Name of the device (SPI:, SPI2:)

access Access type: Device query access, read access, write access, or read-write
access.

Description:
Open the device file. Throw a NspiPortV1Exception if it fails. The device file is

automatically closed by the destructor when the object is destroyed.
The NSPI bus usually has the device name SPI<n>: where <n> is the number of the port,

usually 1. The access defines whether you want to transmit or receive messages.

For the description of NspiAccess see page 18.

Example:
try

{

 // Create a NspiPortV1 object

 NspiPortV1 nspi =

 new NspiPortV1("SPI1:", NspiPortV1.NspiAccess.READ);

}

catch (NspiPortV1Exception e)

{

 // Handle error according to e.Reason

}

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 9 of 29

4.2 HandleErrorsViaReturn()

Signature:
void HandleErrorsViaReturn(bool bCStyle)

Parameters:

bCStyle true: Return error as return value

false: Throw exception on error (default)

Description:
Determine how errors are reported. This can be either by returning an error value (like in C),
or by throwing an exception. This function is usually used right after creating the

NspiPortV1 object.

Please note that the constructor of NspiPortV1 itself will always throw an exception on
error. There is no way of defining the behaviour before calling the constructor and there is no
way to return an error value from a constructor.

Example 1:
// Create a NspiPortV1 object

NspiPortV1 nspi =

 new NspiPortV1("SPI1:", NspiPortV1.NspiAccess.READ_WRITE);

// Set error handling by return value

nspi.HandleErrorsViaReturn(true);

// Send some data and check for error

int err = nspi.Send(...);

if (err != 0)

 Console.WriteLine("Error {0} in Send()", err);

Example 2:
// Create a NspiPortV1 object

NspiPortV1 nspi =

 new NspiPortV1("SPI1:", NspiPortV1.NspiAccess.READ_WRITE);

// Set error handling by return value

nspi.HandleErrorsViaReturn(true);

// Set exception error handling

nspi.HandleErrorsViaReturn(false);

// Send some data and check for error

try

{

 nspi.Send(...);

}

catch (NspiPortV1Exception e)

{

 Console.WriteLine("Error {0} in Send()", e.Reason);

}

Both examples do exactly the same, however one uses the error reporting via return values
and the other the exception mechanism for errors.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 10 of 29

4.3 Exchange()

Signature 1:
int Exchange(byte[] data)

Parameters:

data Array of data bytes to send; will be replaced with received data

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:

Sends all the bytes of the data array to the SPI bus. At the same time receives the same

number of bytes and stores them also in the data array, replacing the previous content.
Therefore this array is an IN and OUT parameter.

Remark:

Please make sure that you don’t need this data anymore as it will be overwritten by this call.
If you need a non-destructive transmission method, use Transfer() instead.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 11 of 29

Signature 2:
int Exchange(byte[] cmd, byte[] data)

Parameters:

cmd Array of command bytes to send

data Array of data bytes to send; will be replaced with received data

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:

First sends all the given bytes of the cmd array. This is a send-only phase, the bytes

received during this phase are discarded. Then sends all the bytes of the data array to the
SPI bus. At the same time receives the same number of bytes and stores them also in the

data array, replacing the previous content. Therefore this array is an IN and OUT
parameter.

Remark:

Please make sure that you don’t need this data anymore as it will be overwritten by this call.
If you need a non-destructive transmission method, use Transfer() instead.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 12 of 29

4.4 Receive()

Signature 1:
int Receive(int len, out byte[] data)

Parameters:

len Number of bytes to receive

data Array of data bytes that are received

Return:
0 Success

!=0 Error from GetLastWin32Error()

Description:

Receives the given number len of bytes from the SPI bus and returns them as an array in

data.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 13 of 29

Signature 2:
int Receive(byte[] cmd,

 int len, out byte[] data)

Parameters:

cmd Array of command bytes to send

len Number of bytes to receive

data Array of data bytes that are received

Return:
0 Success

!=0 Error from GetLastWin32Error()

Description:

First sends all the given bytes of the cmd array. This is a send-only phase, the bytes

received during this phase are discarded. Then receives the given number len of bytes from

the SPI bus and returns them as an array in data.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 14 of 29

4.5 Send()

Signature 1:
int Send(byte[] data)

Parameters:

data Array of data bytes to send

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:

Sends all the given bytes of the data array to the SPI bus.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 15 of 29

Signature 2:
int Send(byte[] cmd, byte[] data)

Parameters:

cmd Array of command bytes to send

data Array of data bytes to send

Return:

0 Success

!=0 Error from GetLastWin32Error()

Description:

First sends all the given bytes of the cmd array, then all the given bytes from the data array
to the SPI bus.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 16 of 29

4.6 Transfer()

Signature 1:
int Transfer(byte[] sdata, out byte[] rdata)

Parameters:

sdata Array of data bytes to send

rdata Array of data bytes that are received

Return:
0 Success

!=0 Error from GetLastWin32Error()

Description:

Sends all the bytes of the sdata array to the SPI bus. At the same time receives the same

number of bytes and returns them as rdata array. The number of bytes to transfer is given

by the length of the sdata array.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 17 of 29

Signature 2:
int Transfer(byte[] cmd,

 byte[] sdata, out byte[] rdata)

Parameters:

cmd Array of command bytes to send

sdata Array of data bytes to send

rdata Array of data bytes that are received

Return:
0 Success

!=0 Error from GetLastWin32Error()

Description:

First sends all the given bytes of the cmd array in a send-only phase. The bytes received

during this phase are discarded. Then sends all the bytes of the sdata array to the SPI bus.

At the same time receives the same number of bytes and returns them as rdata array. The

number of bytes to transfer in this phase is given by the length of the sdata array.

Remark:

Please keep in mind that the underlying NSPI driver function can only handle two arrays.
Therefore this call internally needs to copy the cmd and sdata arrays to one single new
array, causing some overhead. Sometimes it is possible to use the more efficient
Exchange() function instead.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 18 of 29

4.7 enum NspiAccess

Values:

QUERY Just open the device to check parameters

WRITE Open the device for write access

READ Open the device for read-only access

READ_WRITE Open the device for read/write access

Description:

These values may be given when creating the NspiPortV1 object (see page 8). Usually

you would like to use READ_WRITE for access.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 19 of 29

4.8 enum APIError

Values:

ERROR_SUCCESS No error

ERROR_INVALID_FUNCTION Function not implemented

ERROR_FILE_NOT_FOUND Device not found

ERROR_ACCESS_DENIED Access to device denied

ERROR_INVALID_HANDLE Invalid handle

ERROR_NOT_READY Device not ready

ERROR_WRITE_FAULT Write fault

ERROR_GEN_FAILURE Generic device error

ERROR_DEV_NOT_EXIST Device does not exist

ERROR_INVALID_PARAMETER Bad parameters

ERROR_INVALID_NAME Invalid device name

ERROR_TIMEOUT Device timed out

Description:

The most common values that are reported as errors when calling the NspiPortV1
functions. For additional values see the Win32 API.

Especially if the NSPI device driver is not installer, you’ll get ERROR_DEV_NOT_EXIST when

trying to create the NspiPortV1 object.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 20 of 29

5 The NspiPortV1Exception class

The NspiPortV1Exception class defines an exception used in combination with the

NspiPortV1 class. When an error happens within a function of NspiPortV1, it throws this

kind of exception, so you can react to it in a try-catch statement.

The NspiPortV1Exception extends ApplicationException by a read-only property

int Reason, showing the error code why the exception was thrown. This is usually the

value returned by the Win32 API via GetLastWin32Error(). A typical piece of code
would look like this.
try

{

 NspiPortV1 nspi = new NspiPortV1("SPI1:", ...);

 ... // Use nspi

}

catch (NspiPortV1Exception e)

{

 switch (e.Reason)

 {

 case NspiPortV1.APIError.ERROR_DEV_NOT_EXIST:

 ... // Handle error

 case NspiPortV1.APIError.ERROR_ACCESS_DENIED:

 ... // Handle error

 }

}

When examining the reason, NspiPortV1.APIError (see page 18) may be of some help
to check for possible error sources.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 21 of 29

5.1 NspiPortV1Exception() (Construction)

Signature 1:
NspiPortV1Exception(string text, int reason)

Parameters:

text Error text

reason Error number

Description:

Store given error value as Reason. The error text is automatically completed with “: Error

code <reason>” where <reason> is the given error number.

Signature 2:
NspiPortV1Exception(string text, int reason,

 Exception inner)

Parameters:

text Error text

reason Error number

inner Inner exception

Description:
Same as above, but with inner exception.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 22 of 29

Signature 3:
NspiPortV1Exception(string text)

Parameters:

text Error text

Description:

Same as above, but automatically use the result of GetLastWin32Error() as error
number.

Signature 4:
NspiPortV1Exception(string text,

 Exception inner)

Parameters:

text Error text

inner Inner exception

Description:
Same as above, with inner exception.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 23 of 29

Signature 5:
NspiPortV1Exception(int reason)

Parameters:

reason Error number

Description:

Use given error number and "System error" as error text.

Signature 6:
NspiPortV1Exception(int reason,

 Exception inner)

Parameters:

reason Error number

inner Inner exception

Description:
Same as above, but with inner exception.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 24 of 29

Signature 7:
NspiPortV1Exception()

Description:

Use GetLastWin32Error() as error number and string "System error" as error text.

Signature 8:
NspiPortV1Exception(Exception inner)

Parameters:

inner Inner exception

Description:
Same as above, but with inner exception.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 25 of 29

6 Sample Program

The following program exchanges some data with an FRAM FM24CL64 with 64 Kbyte

connected on SPI1:. The is a non-volatile RAM. Accessing it always requires a command
phase.
Reading can be done anytime. A read command consists of a command byte and two bytes
with the start address where to read from. Then any number of bytes can be read.
Writing is only possible if the device is unprotected and a special write latch is enabled. Then
the write command also consists of a command byte and two bytes with the start address
where to start writing. Then any number of bytes can be written.
The write protection is handled by a bit in the status register. Setting the write enable latch is
a separate command.

/**/

/*** File: fm25cl64.cs ***/

/*** Author: Hartmut Keller, (C) F&S 2009 ***/

/*** ***/

/*** Description: Example using the NspiPortV1 class ***/

/**/

using FS.NetDCU;

namespace FS.NetDCU

{

 class Program

 {

 /* Command bytes for FRAM FM25CL64 */

 const byte MEM_WREN = 0x06; /* Write Enable Latch */

 const byte MEM_WRDI = 0x04; /* Write Disable */

 const byte MEM_RDSR = 0x05; /* Read Status Reg */

 const byte MEM_WRSR = 0x01; /* Write Status Reg */

 const byte MEM_READ = 0x03; /* Read Memory Data */

 const byte MEM_WRITE = 0x02; /* Write Memory Data */

 /* The NativeSPI object */

 static NspiPortV1 nspi;

 /* Read some bytes from the FRAM */

 static void ReadMem(int addr, int count,

 out byte [] data)

 {

 /* Give read command and read bytes */

 byte[] command =

 {

 MEM_READ,

 (byte)(addr/256),

 (byte)(addr%256)

 };

 nspi.Receive(command, count, out data);

 }

 /* Write some data to the FRAM */

 static void WriteMem(int addr, byte [] data)

 {

 /* Set write enable latch */

 byte[] command1 =

 {

 MEM_WREN

 };

 nspi.Send(command1);

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 26 of 29

 /* Protect or unprotect the FRAM */

 static void Protect(bool bOn)

 {

 byte[] command = new byte[1];

 /* Set write enable latch */

 command[0] = MEM_WREN;

 nspi.Send(command);

 /* Read status register */

 byte[] sr;

 command[0] = MEM_RDSR;

 nspi.Receive(command, 1, out sr);

 /* Set/clear protect flag */

 if (bOn)

 sr[0] |= 0x0C; /* protect */

 else

 sr[0] &= 0xFF-0x0C; /* unprotect */

 /* Write back to status register */

 command[0] = MEM_WRSR;

 nspi.Send(command, sr);

 }

 /* Write some data to the FRAM */

 static void WriteMem(int addr, byte [] data)

 {

 /* Set write enable latch */

 byte[] command1 =

 {

 MEM_WREN

 };

 nspi.Send(command1);

 /* Give write command and write bytes */

 byte[] command2 =

 {

 MEM_WRITE,

 (byte)(addr/256),

 (byte)(addr%256)

 };

 nspi.Send(command2, data);

 }

 /* Main program: Do some FRAM transfers */

 static void Main(string[] args)

 {

 /* Create the NspiPortV1 object */

 nspi = new NspiPortV1("SPI1:",

 NspiPortV1.NspiAccess.READ_WRITE);

 /* Read 100 bytes from the FRAM at address 0 */

 byte[] buffer;

 ReadMem(0, 100, out buffer);

 /* Unprotect the FRAM */

 Protect(false);

 /* Write "xxxxxx" at address 0 */

 byte[] cleardata =

 {

 (byte)'x', (byte)'x', (byte)'x',

 (byte)'x', (byte)'x', (byte)'x', 0

 };

 WriteMem(0, cleardata);

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 27 of 29

 /* Read back data, should start with "xxxxxx" */

 ReadMem(0, 100, out buffer);

 /* Write "Hello world!" at address 0 */

 byte[] demodata =

 {

 (byte)'H', (byte)'e', (byte)'l',

 (byte)'l', (byte)'o', (byte)' ',

 (byte)'w', (byte)'o', (byte)'r',

 (byte)'l', (byte)'d', (byte)'!', 0

 };

 WriteMem(0, demodata);

 /* Write protect FRAM */

 Protect(true);

 /* Read back data, starts with "Hello world!" */

 ReadMem(0, 100, out buffer);

 }

 }

}

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 28 of 29

7 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility,
however, for possible errors or omissions, or for any consequences resulting from the use of
the information contained in this documentation.
F&S Elektronik Systeme reserves the right to make changes in its products or product
specifications or product documentation with the intent to improve function or design at any
time and without notice and is not required to update this documentation to reflect such
changes.
F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.
Specific testing of all parameters of each device is not necessarily performed unless
required by law or regulation.
Products are not designed, intended, or authorized for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorized application, the Buyer shall
indemnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, expenses, and
reasonable attorney fees arising out of, either directly or indirectly, any claim of personal
injury or death that may be associated with such unintended or unauthorized use, even if
such claim alleges that F&S Elektronik Systeme was negligent regarding the design or
manufacture of said product.
Specifications are subject to change without notice.

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a
period of one (2) year from the date of shipment. Your sole remedy and F&S’s sole liability
shall be for F&S, at its sole discretion, to either repair or replace the defective hardware
product at no charge or to refund the purchase price. Shipment costs in both directions are
the responsibility of the customer. This warranty is void if the hardware product has been
altered or damaged by accident, misuse or abuse.

Software Warranties
Software is provided “AS IS”. F&S makes no warranties, either express or implied, with
regard to the software object code or software source code either or with respect to any third
party materials or intellectual property obtained from third parties. F&S makes no warranty
that the software is useable or fit for any particular purpose. This warranty replaces all other
warranties written or unwritten. F&S expressly disclaims any such warranties. In no case
shall F&S be liable for any consequential damages.

Software Documentation NetDCUx Native SPI V1 Software Interface for .NET | 29 of 29

Disclaimer of Warranty

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER
EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC
PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF
ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE
REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF
ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR
EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT.
IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL
DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY
PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE
F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS
MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

	History
	Table of Contents
	1 Introduction
	2 Installing the NSPI Software Driver
	2.1 Installation with the CAB file
	2.2 Manual installation
	2.3 Installing the .NET library NativeSPI-V1.dll

	3 The NSPI Driver in Applications
	4 The NspiPortV1 class
	4.1 NspiPortV1() (Construction)
	4.2 HandleErrorsViaReturn()
	4.3 Exchange()
	4.4 Receive()
	4.5 Send()
	4.6 Transfer()
	4.7 enum NspiAccess
	4.8 enum APIError

	5 The NspiPortV1Exception class
	5.1 NspiPortV1Exception() (Construction)

	6 Sample Program
	7 Appendix
	Important Notice
	Warranty Terms

