
F+S Multi-Platform Linux

First Steps

Version 1.0
(2012-11-22)

fss5pv210

Linux

About This Document

This document shows how to bring up F&S boards and modules under Linux, how to update
firmware and how to use the system and the devices. It covers also compiling bootloader,
linux kernel image and root filesystem as well as how to build your own applications for the
device. The latest version of this document can be found at http://www.fs-net.de.

Remark

The version number on the title page of this document is the version of the document. It is
not directly related to the version number of the driver software described herein.

How To Print This Document

This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions

We use different fonts to emphasize the context of special terms:

File names

Menu entries

Program code

Listings

Board input/output

© 2012

F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

iii

8 9

Title-

page

http://www.fs-net.de/

For file names we use placeholders for:

<Platform> that you have to replace with the name of your board like armStoneA8.

<Architecture> that you have to replace with the name of the target architecture like
fss5pv210.

V<x>.<y> that you have to replace with the version major and minor numbers.

For binary package files we use format:

<Package>-<Board | Architecture | f+s>-V<x>.<y>.<extension>

For source package files we use format:

<Package>-<Packageversion>-<Board | Architecture | f+s>-V<x>.<y>.<extension>

iv

History
Date V Platform A,M,R Chapter Description Au

V Version

A,M,R Added, Modified, Removed

Au Author: CZ, DK, HF, HK, MK

v

vi

Table of Contents

1 Introduction 1

2 Development Environment 3
2.1 Starterkit ...4
2.1.1 armStoneA8...4
2.1.2 PicoMOD7A...5
2.1.3 NetDCU14..6

3 Download Area 7

4 Bringing up the system 11
4.1 Check NBoot version...12
4.2 Load and Save U-Boot...12
4.3 Load and Save Linux Kernel Image...13
4.4 Load and Save Root File System...15

5 Updating 18
5.1 USB Stick...18

6 Switching Boot Strategies 20

7 Using the Standard System and Devices 21
7.1 The Sysfs ..21
7.2 GUI..22
7.2.1 HDMICFG..22
7.2.2 Setup display..23
7.3 Backlight..24
7.4 Ethernet...24
7.5 Telnet...24
7.6 DirectFB...24
7.7 Serial..25
7.8 SPI...25
7.9 CAN...26
7.10 SD-Card...26
7.11 USB-Stick (storage)...27
7.12 Touch...27
7.13 RTC...27
7.14 PWM..28
7.15 GPIO ...28
7.16 Sound...29
7.17 Video..30
7.18 Pictures..30
7.19 TFTP..30

vii

7.20 SSH..30
7.21 VNC...31

8 Cross-Compile Toolchain 32

9 Compiling U-Boot 33

10 Compiling the Linux Kernel 34

11 Compiling Buildroot 35

12 Hello World 38
12.1 Create your source file...38
12.2 Compile your source file...38
12.3 Run your application on the device..39

13 Debugging 40

14 IDE - Eclipse 42
14.1 Create a Project...43
14.2 Setup Properties..44
14.3 Add a source file and build the project...45
14.4 Remote connection..45
14.4.1 Connect and test ...46
14.5 Run your application..47
14.6 Debug your application..47

15 Appendix 48
Listings..48
List of Figures..48
List of Tables...49
Important Notice..50

viii

Introduction

1 Introduction
F&S offers a whole variety of Systems on Module (SOM) and Single Board Computers
(SBC). There are different board families that are named NetDCU, PicoMOD, PicoCOM,
armStone, QBliss and nanoRISC. Linux is available for all of these platforms. However in the
past, there was a separate Linux release for each platform.

Starting with V2.0, we are releasing combined versions of Linux that are suited for a whole
group of platforms. These releases are therefore called Multi-Platform Linux Releases. Cur-
rently the boards armStoneA8, NetDCU14 and PicoMOD7A are supported by our Multi-Plat-
form Linux, but more platforms will be added in the future.

The main purpose of our Multi-Platform Linux is that all supported boards share the same
software versions and provide the same features, as far as the hardware allows. This makes
switching from one platform to another rather straightforward and smooth and allows the
customer to always choose the board that is suited best for a specific application without be-
ing confronted with a new development environment all the time.

If you look at Figure 1, you will see that a typical Linux system has several layers. At the bot-
tom, there is the hardware of the platform. A bootloader initializes and configures the hard-
ware and then starts the Linux Kernel that contains all the device drivers, controls the
memory and data storage and handles process execution. All system and userspace pro-
grams, tools and data files are located in a filesystem that is usually called Root Filesystem.
And finally the customer application is executing the function that the device is dedicated for.

So the Linux infrastructure is far more than just the kernel. The Linux distribution from F&S
covers the following parts:

1

Figure 1: Components of a Linux system

Introduction

Hardware.......................................The platform manufactured by F&S

Bootloader.....................................The bootloader is split into two parts: a small stepping
stone loader called NBoot that simlpy calls the main boot-
loader and the main bootloader itself, called U-Boot.

Linux Kernel...................................This is a modified mainline Linux kernel

Root Filesystem.............................We use a BuildRoot based root filesystem

In this document, we will show you how you get started with such a platform and how you
compile your first programs.

2

Development Environment

2 Development Environment
To seriously work with F&S boards and modules, you need a Linux based PC for the soft -
ware development, a terminal program to enter commands on the command line, a TFTP
server to download files to the board and an NFS server to provide files and directories over
the network.

We at F&S use:

● Linux PCs based on Fedora Linux as development machines. They are running as
virtual machines in VirtualBox (Oracle) under a Windows host.

● Putty (terminal program) connected to the serial console of the board to enter com-
mands for U-Boot and Linux.

● Tftp server and nfs server provided by the Linux distribution.

In addition we sometimes use the following Windows software

● DCUTerm (terminal program for Windows) to download U-Boot by serial line.

● TFTPD (by Philippe Jounin) as TFTP Server.

Note:

You will find the document AdvicesForLinuxOnPC.pdf in the software release archive
that explains how to setup a linux based development machine. Or you can download it
from the documents download section of our web server at:

http://fs-net.de

3

http://www.fs-net.de/

Development Environment

2.1 Starterkit

2.1.1 armStoneA8

4

Figure 2: armStoneA8 Starterkit

Development Environment

2.1.2 PicoMOD7A

5

Figure 3: PicoMOD7A Starterkit (top)

Figure 4: PicoMOD7A Starterkit (bottom)

Development Environment

2.1.3 NetDCU14

6

Figure 5: NetDCU14 Starterkit

Download Area

3 Download Area
There exist two download areas on the F&S web server. The first is the document download
area directly on

http://www.fs-net.de

where you have to select “Downloads” and the board family from the menu on the left side.
And there is the software download area

http://download.fs-net.de

where you can always find our newest software releases. Some parts of this area are pass-
word protected, but if you purchase a Starterkit, you will also get the necessary information
to log in to this area.

When you look at our new Linux releases, you will find two tar archives.

multiplatform-linux-f+s-V<x>.<y>.tar.bz2
This is the main release itself containing all sources, the
binary images, the documentation and the toolchain.

sd-card-V<x>.<y>.tar.bz2. . .If you copy the contents of this archive to an SD card, you
can install our precompiled standard system in a very
straightforward and comfortable way on the board.

The SD card archive is meant for people who just want to try a release first without having to
download the quite large main archive. Its content is also contained in the main release
archive, so if you want to download the main archive anyway, you don't need to bother with
the SD card archive.

These tar archives are compressed with bzip2. So to see the files, you first have to unpack
the archives

tar jxvf multiplatform-linux-f+s-V<x>.<y>.tar.bz2

This will create a directory multiplatform-linux-f+s-V<x>.<y> that contains all the
files of the release. The files of the release often use a common naming scheme:

<package>-<platform>-V<x>.<y>.<extension>

With the following meaning:

<package>...................................The name of the package (e.g. uboot, linux, rootfs)

<platform>.................................The name of a board, if the package is only valid on one
board (e.g. armStoneA8); or the name of an architecture,
if the package is valid on different boards of the same ar-
chitecture (e.g. fss5pv210), or the string „f+s“ if the pack-
age is architecture independent. For a list of possible plat-
forms and architectures see Table 1 and Table 2. Names
that will be available in the future are shown in grey.

V<x>.<y>.....................................The major and minor number of the release (e.g. V2.0)

<extension>...............................The extension of the package (e.g. .bin, .tar.bz2, etc.)

7

http://download.fs-net.de/
http://www.fs-net.de/

Download Area

<Platform> Description

armStoneA8 SBC, Cortex-A8 @ 800MHz with NEON 100x72mm (PicoITX)

PicoMOD7A COM, Cortex-A8 @ 1GHz with NEON 80x50mm

NetDCU14 SBC, Cortex-A8 @ 1GHz with NEON 100x80mm

PicoMOD6 COM, ARM1176 @ 533MHz with FPU 80x50mm

PicoCOM3 COM, ARM1176 @ 533MHz with FPU 40x50mm

PicoCOM4 COM, ARM926 @ 400MHz 40x50mm

Table 1: F+S Platforms

<Architecture> Platform

fss5pv210 S5PV210: armStoneA8, PicoMOD7A and NetDCU14

fss3c64xx S3C64xx: PicoMOD6 and PicoCOM3

fss3c2416 S3C2416: PicoCOM4

Table 2: F+S Architectures

The following table lists the files that you get after unpacking the release archive.

8

Download Area

Directory/File Description

binaries/ Images to be used with the platform dir-
ectly

nbootv210_18.bin Architecture specific NBoot

uboot-<Architecture>-V<x>.<y>.nb0 U-Boot (bootloader) image

zImage-<Architecture>-V<x>.<y> Compressed kernel image (can be used as is
with U-Boot)

rootfs_std-<Platform>-V<x>.<y>.ubifs Standard root file system (UBIFS format) to
be stored in nand flash memory

rootfs_std-<Platform>-V<x>.<y>.ext2 Standard root file system (EXT2 format) to be
used via NFS

rootfs_min-<Platform>-V<x>.<y>.ubifs Minimal root file system (UBIFS format) to be
stored in nand flash memory

rootfs_min-<Platform>-V<x>.<y>.ext2 Minimal root file system (EXT2 format) to be
used via NFS

install.scr Install script (U-Boot autoscript image)

sources/ Configurations and sources

u-boot-<Packageversion>-f+s-
V<x>.<y>.tar.bz2

U-Boot source with modifications

linux-<Packageversion>-f+s-
V<x>.<y>.tar.bz2

Linux kernel source with modifications

buildroot-<Packageversion>-f+s-
V<x>.<y>.tar.bz2

Buildroot package with modifications

toolchain/ Cross-Compilations toolchain

fs-toolchain-4.6.3-armv6-vfp.tar.bz2 F&S toolchain to use with fss5pv210 and
fss3c6410

mkimage Program needed for autoscript images

examples/ Short example programs

can.tar.bz2 CAN tools to test CAN

gpio.tar.bz2 GPIO usage from userspace

9

Download Area

spi_xxx SPI example...

doc/ Documentation

FirstSteps.pdf First Steps document

<Platformname>-Hardware_eng.pdf Hardware description

AdvicesForLinuxOnPC.pdf Document describing how to install servers
and tools on a Linux PC to be used with F&S
Linux boards.

sd-card/ Files to copy to SD card

nbotv210.bin Architecture specific NBoot

ubotv210.nb0 Architecture specific Uboot

zImage-<Architecture> Architecture specific Linux Kernel image

rootfs-<Platform>.ubifs Board specific Root File System

install.scr Same as install-fss5pv210-V1.0.uboot

/

Readme.txt Release notes

buildbin.bash Script file to build all binary packages (used
by F&S to build the release packages)

mktar.bash Script to generate install.scr and sd-card dir-
ectory (used by F&S when packaging the re-
lease)

Table 3: Content of the created release directory

Remark

The files in the subdirectory sd-card are actually only symbolic links to the according files
in the binaries directory. However if you copy the content to an actual SD card, the refer-
enced files will be copied and you get fully normal SD card content.

If you have problems unpacking the sd-card directory, for example on a Windows based
system that does not know about symbolic links, you can also unpack the separate SD card
archive, that just contains this directory.

10

Bringing up the system

4 Bringing up the system
When you get a Starterkit from F&S, the Linux system is usually pre-installed. In this case
you can skip this chapter. But if you are switching over from an other operating system, if
you are upgrading from a previous release or if your board is empty for some other reason,
the following section describes how to install the provided standard images of the release on
your platform.

Installing the Linux system involves four steps:

1. Check the NBoot version and erase flash

NBoot is a small stepstone bootloader that is running before the main bootloader. It is
the same for Linux and Windows CE and always remains on the board even if the
whole flash memory is erased. By default NBoot is rather invisible and just loads and
starts the main bootloader when the board is switched on. But it can also be used to
download and store a new bootloader.

2. Install the Linux bootloader U-Boot

U-Boot is the main Linux bootloader. Usually it simply activates the hardware, loads
the Linux kernel from flash to RAM and executes it. But it is also used to download
and install the Linux kernel and the Linux root filesystem. It can also boot the board
from different devices, for example from a server across the network.

3. Install the Linux kernel image

The Linux kernel image is the operating system of the device. It provides the device
drivers, filesystems, multitasking and all I/O features that the board supports.

4. Install the root file system

The root filesystem is the filesystem that you see after the kernel has booted. It con-
tains the userspace programs, libraries and configuration files required to run the
Linux system and applications. The default root filesystem supplied with the board
has a Busybox for starting the system and to provide all standard command line
tools, some ALSA tools for sound, gstreamer for audio and video processing, Di-
rectFB with a few examples, a rudimentary X-Server to show some graphical user in-
terface after startup and of course all the shared libraries like glibc.

There are many different ways how these four steps can be achieved, but the easiest way is
to use an SD card.

By the way for these first tests you don't necessarily need a Linux PC. A Windows PC will do
fine. However later, when actually developing applications, you'll definitely need a PC with a
Linux OS. But this can also be a virtual machine. For example we are doing all Linux devel-
opment on Fedora Linux in virtual machines as guests on Windows 7 and Windows XP
hosts.

11

Bringing up the system

Copy all the files from directory sd-card to your SD card. Then insert the card into the slot of
the board. You'll also need a terminal program (e.g. putty) to enter your commands and send
them to the board.

Before you start, please power off your board. This is important to clear the RAM. Otherwise
U-Boot may find an old kernel binary in RAM and execute it instead of installing the new sys-
tem.

4.1 Check NBoot version

Connect the serial debug port (please refer chapter 3.1) to your PC. Use 38400 baud, 1
start, 1 stop bit, no flow control. Then in your terminal program, open the serial connection.
Press and hold key 's' (lower case S). While holding this key, switch on power of the board
(or press the reset button). This should bring you into the stepstone bootloader NBoot. You
should see something like this (output is taken from PicoMOD7A):

F&S Nand Loader VN15 built Jul 24 2012 19:54:54
PicoMOD7A Rev. 1.30
256 MB RAM (2 chips) 128 MB FLASH 1000 MHz

Please select action
'd' -> Serial download of bootloader
'c' -> Load bootloader from SD card
'l' -> Load installed bootloader from flash
'E' -> Erase flash
'B' -> Show bad blocks
Use NetDCUUsbLoader for USB download

Listing 1: Nboot menu

Please verify the version of Nboot, here VN15. To be able to use the MultiPlatform Linux Re-
lease, you need at least version VN18 on armStoneA8, NetDCU14 and PicoMOD7A. So the
above version would be too old and must be updated.

To update NBoot, just press the key 'N' (upper case n). This loads the new version from the
SD-Card. Then press 'f' (lower case F) to save the new version to flash memory. Now restart
the board with the sequence above and check again if the new version is running now.

4.2 Load and Save U-Boot

If the NBoot version is OK, then erase the flash by pressing 'E'. This removes everything that
was on the board before. Don't be afraid, this won't erase NBoot itself.

Then press 'c' (lower case C). This will show some messages similar to this:

Card Info:
 Type: SD Card (Byte Mode)
 Specification Version: 0
 Relative Card Address: 1

12

Bringing up the system

 Operating Frequency: 12826923Hz (Normal Speed)
 Bus Width: 4 bits
 Manufacturer ID: 24
 OEM/Application ID: IN
 Product Name: 12221
 Product Revision: 0.3
 Serial Number: 1081883002
 Manufacturing Date: 09/2005
 C_SIZE: 1917
 C_SIZE_MULT: 5
 Block size: 512 bytes
 Total card size: 245504 blocks (119MB)
 Partial reads: yes
FAT Info:
 Start Sector = 99
 Sectors Per Cluster = 4
 Reserved Sectors = 8
 Number of Sectors = 245405
 Sectors Per FAT = 240
Trying 'ebotv210.nb0'...Failed
Trying 'eboot.nb0'...Failed
Trying 'ubotv210.nb0'...Success

>>> U-Boot image loaded (393216 bytes) <<<
Listing 2: Updating U-Boot via SD-Card

Now save U-Boot by pressing 'f' (lower case F). This should show

Saving U-Boot...Success

4.3 Load and Save Linux Kernel Image

As the U-Boot image is still loaded in RAM from the previous step, you can directly start U-
Boot by pressing 'x' (lower case X). This will show something like this:

U-Boot 2011.12 for F&S

CPU: S5PV210@1000MHz
Board: PicoMOD7A Rev 1.30 (2x DRAM, 1x LAN, 1000 MHz)
DRAM: 256 MiB
WARNING: Caches not enabled
NAND: 128 MiB
MMC: SAMSUNG SD/MMC: 0
*** Warning - bad CRC, using default environment

In: serial
Out: serial
Err: serial
Net: AX88796-0

13

Bringing up the system

Hit any key to stop autoboot: 0

Now the board is looking for an update script. This will fail, as we have no file name "up-
date.scr" on our SD card.

---- Trying autoload from mmc0:1 ----
reading update.scr
Failed!
---- Trying autoload from usb0:1 ----
USB: Register 1111 NbrPorts 1
USB EHCI 1.00
scanning bus for devices... 2 USB Device(s) found
 scanning bus for storage devices... 0 Storage Device(s)
found
Failed!
---- No autoload script found ----

Then the board tries to boot an existing Linux system. This will also fail as we have valid im-
age stored.

NAND read: mtdparts variable not set, see 'help mtdparts'
incorrect device type in Kernel
Wrong Image Format for bootm command
ERROR: can't get kernel image!

Now U-Boot tries to install a new system by starting the script "install.scr" from the SD card.
This is actually found on the card. So this script is loaded and executed. From now on the in-
stallation procedure goes automatically.

---- Trying autoload from mmc0:1 ----
reading install.scr
Success!

Listing 3: U-Boot running installation script from sd card

We don't see the commands that are executed, just the output of them. The Linux kernel im-
age is loaded and stored to the Kernel partition.

reading zimage

2757552 bytes read

NAND erase.part: device 0 offset 0x500000, size 0x300000
Erasing at 0x7e0000 -- 100% complete.
OK

NAND write: device 0 offset 0x500000, size 0x2a13b0
 2757552 bytes written: OK

Listing 4: U-Boot flashing Linux kernel image from sd card

14

Bringing up the system

4.4 Load and Save Root File System

The installation script automatically continues to create a UBI volume on the TargetFS parti-
tion and to load the root filesystem and store it there.

NAND erase.part: device 0 offset 0x800000, size 0x7800000
Erasing at 0x7fe0000 -- 100% complete.
OK
Creating 1 MTD partitions on "nand0":
0x000000800000-0x000008000000 : "mtd=5"
UBI: attaching mtd1 to ubi0
UBI: physical eraseblock size: 131072 bytes (128 KiB)
UBI: logical eraseblock size: 129024 bytes
UBI: smallest flash I/O unit: 2048
UBI: sub-page size: 512
UBI: VID header offset: 512 (aligned 512)
UBI: data offset: 2048
UBI: empty MTD device detected
UBI: create volume table (copy #1)
UBI: create volume table (copy #2)
UBI: attached mtd1 to ubi0
UBI: MTD device name: "mtd=5"
UBI: MTD device size: 120 MiB
UBI: number of good PEBs: 960
UBI: number of bad PEBs: 0
UBI: max. allowed volumes: 128
UBI: wear-leveling threshold: 4096
UBI: number of internal volumes: 1
UBI: number of user volumes: 0
UBI: available PEBs: 947
UBI: total number of reserved PEBs: 13
UBI: number of PEBs reserved for bad PEB handling: 9
UBI: max/mean erase counter: 1/0
No size specified -> Using max size (122185728)
Creating dynamic volume rootfs of size 122185728
reading rootfs.ubi

6451200 bytes read
6451200 bytes written to volume rootfs

Listing 5: U-Boot flashing root file system from sd card

By the way if you get some messages about bad blocks, like in the output above, don't
worry. NAND flash memory often has some bad bits. This is taken care of by the software
and these blocks are automatically skipped. A few bad blocks are completely normal and no
reason for reclamation.

Finally the environment is saved, i.e. all the settings done in U-Boot, and the installation
script stops with a message.

15

Bringing up the system

Saving Environment to NAND...
Erasing Nand...
Erasing at 0xe0000 -- 100% complete.
Writing to Nand... done
Installation complete

Please set/verify ethernet address(es) now and call saveenv
#

Now we only have to set the MAC address of the ethernet chip.

setenv ethaddr 00:05:51:xx:yy:zz

Please replace xx, yy and zz with the numbers of the sticker on your board. This is a unique
address that is only valid for your board. You must set this Ethernet MAC address!!! The de-
fault address that is used otherwise is the same for all boards and will definitely lead to prob-
lems in real networking scenarios.

You should also set other networking parameters here. They will be required if installing via
Ethernet and of course later when working with the board. You should set the following four
entries:

Environment Variable Meaning

ipaddr The IP address of your board

serverip The IP address of your TFTP and/or NFS server (usually your
development PC)

gatewayip The IP address of your gateway; this is the device in your net-
work that knows how to access the internet (usually your
router)

netmask The network mask used for your network (usually 255.0.0.0 for
local network 10.x.x.x or 255.255.255.0 for local network
192.168.n.x)

Table 4: U-Boot network settings

Note:

Do not forget to save your modifications!

16

Bringing up the system

After you are done, save everything with:

saveenv

Now you're done. You can restart the board with command

reset

Summary

After starting into NBoot, you actually only have to press four keys: 'E' for erasing the mem-
ory, 'c' for loading U-Boot, 'f' for saving U-Boot, 'x' for starting U-Boot and the installation
script. After the installation is done, set the MAC address(es) and save the environment.

That's it.

17

Updating

5 Updating
Updating of one of the system images (U-Boot, Linux kernel, root filesystem) later happens
within U-Boot. Now even the U-Boot image can be replaced from within U-Boot.

Just load the file. Either from Micro SD card (fatload), USB stick (fatload), TFTP (tftp), or
NFS (nfs). Then save the file to the appropriate MTD partition. If writing to UBoot or Kernel
partition, you have to erase the partition first.

nand erase.part <partname>

Then you can write the new image by

nand write $(loadaddr) <partname> $(filesize)

If you write to a UBI volume, you don't need to erase anything first. Just write the new data
with

ubi write $(loadaddr) <volumename> $(filesize)

5.1 USB Stick

Installation using a USB memory stick works rather similar to using the Micro SD card.
Please also format the USB stick as FAT or FAT32 and store the following files from the sd-
card directory into the root directory of the stick.

● zImage-<Architecture>

● rootfs-<Platform>.ubifs

The USB stick should be inserted in the USB slot on the board. Start the USB system with
command

usb start

This will activate the USB port and scan for USB storage devices. It should show something
like this:

 (Re)start USB...
 USB: Register 1111 NbrPorts 1
 USB EHCI 1.00
 scanning bus for devices... 2 USB Device(s) found
 scanning bus for storage devices... 1 Storage Device(s)
found

18

Updating

then start download to RAM with:

fatload usb 0 $(loadaddr) zImage-<Platform>
 reading zImage-<Platform>

 2757552 bytes read

Now write the image from RAM to NAND Flash like described at the beginning of this
chapter.

19

Switching Boot Strategies

6 Switching Boot Strategies
U-Boot is capable of loading the kernel in different modes. During development it may be
useful to have the (often changing) root filesystem on the PC itself and export it via NFS.
Then U-Boot can prepare the Linux kernel to load the root filesystem via NFS. Among other
things, this requires giving the network settings (ipaddr, serverip, gatewayip, netmask), root
device (/dev/nfs) and exported directory (rootfs) on the NFS server on the command line.
We have prepared an environment variable bootnfs that easily allows switching to NFS boot-
ing. It assumes that the exported directory is called rootfs in this case.

bootnfs=setenv bootargs console=ttySAC0,38400 $(mtdparts) \
 root=/dev/nfs nfsroot=/rootfs ip=$(ipaddr):$(serverip): \
 $(gatewayip):$(netmask) ro init=linuxrc

Listing 6: Linux kernel image bootargs for nfsroot

In the same spirit it is common usage to have a system running stand-alone with a root
filesystem in the UBI volume rootfs on MTD partition TargetFS. Then among other things we
have to give the type of root filesystem (UBIFS), the MTD partition (TargetFS) and the UBI
volume name (rootfs) on the Linux command line. Again there is an environment variable to
support this setting.

bootubi=setenv bootargs console=ttySAC0,38400 $(mtdparts) \
 rootfstype=ubifs ubi.mtd=TargetFS root=ubi0:rootfs ro \
 init=linuxrc

Listing 7: Linux kernel image bootargs for RFS as UBIFS

To activate one of these boot strategies, just run the appropriate environment variable and
save the environment to make the change permanent. For example to boot via NFS the next
time, call:

run bootnfs
saveenv

Please replace ttySAC0 for your board by:

Board Serial debug port

armStoneA8 ttySAC0

PicoMOD7A ttySAC2

NetDCU14 ttySAC1

Table 5: Serial debug ports

20

Using the Standard System and Devices

7 Using the Standard System and Devices
The standard root filesystem is mounted read-only. Therefore you can't create files unless
you go to a directory like /tmp. This is to make the system as stable as possible. If the root
filesystem is mounted read-only, it is usually no problem to just switch off the power.

If you want to mount the filesystem read-write, just say

mount -o remount,rw /

But then it is saver to actually shut down the system with

halt

or restart with

reboot

Or you can remount the root filesystem back to read-only after applying the changes

mount -o remount,ro /

7.1 The Sysfs

Sysfs is a virtual file system provided by Linux. Sysfs exports information about devices and
drivers from the kernel device model to user space, and is also used for configuration. You
find configuration and device information under the class/ tree:

ls /sys/class/
backlight graphics mem rtc spidev
vtconsole bdi i2c-adapter misc
scsi_device tty block i2c-dev mmc_host
scsi_disk ubi dma input mtd
scsi_host vc firmware lcd net
sound video4linux gpio mdio_bus regulator
spi_master video_output

You can examine wich major and minor number each device has, so you can create the cor-
responding device nodes

cat /sys/class/i2c-dev/i2c-0/dev
89:0

Listing 8: Using Sysfs to examine devices

21

Using the Standard System and Devices

Or for example access the RTC subsystem

cat /sys/class/rtc/rtc0/date
2012-08-09

Or you can see what devices are attached to different busses

cat /sys/class/spi_master/spi1/spi1.0/modalias
mcp2515

On the next pages you will learn how to use Sysfs to access PWM or GPIOs.

7.2 GUI

The default GUI just shows a rudimentary X window desktop under a matchbox window
manager. It contains a few icons, a starter menu and a clock. You can start a terminal pro-
gram and a system load monitor from the starter menu. You can also click on the desktop
icons and open them, but there are no further X applications installed. You can connect a
USB mouse and/or USB keyboard (e.g. by using a USB hub) and then move the mouse
cursor and type commands to the terminal window.

The whole system is not very functional and just demonstrates how a GUI could be imple-
mented. We don't want to get a too large default root filesystem and we don't want to influ-
ence your decision of what type of GUI to use (QT, GTK, DirectFB, etc).

You can start some X applications on the command line:

 export DISPLAY=:0
 xclock &
 xeyes &
 xcalc &
 fbv /usr/share/directfb-examples/*.png &

The X server is started with script file /etc/init.d/S35x11. So if you don't want this GUI started
at every boot, just rename this script to something that does not start with S and two digits.
For example rename it to X35x11. Then you can rename it back any time you want.

7.2.1 HDMICFG

Only on fss5pv210

With the hdmicfg configuration program a linux framebuffer can be output to HDMI. With the
F+S Buildroot version this program is started on boot time with the init script S17hdmicfg loc-
ated in /etc/init.d. To start/stop this script run:

22

Using the Standard System and Devices

/etc/init.d/S17hdmicfg stop
Stopping hdmicfg...
/etc/init.d/S17hdmicfg start
Starting hdmicfg...

You can output linux framebuffer on a second output device at the same time by:

hdmicfg -x 150 -y 100 -o /dev/video1

See the options for the hdmicfg program with:

hdmicfg --help

7.2.2 Setup display

With the latest release setting up your display is done inside the Linux kernel image. So you
need to recompile the linux kernel. Please install the F+S toolchain and extract the Linux ker-
nel source. Then follow steps in chapter 11. From the kernel configuration menu setup your
display parameters in the Generic LCD configuration menu.

23

Using the Standard System and Devices

7.3 Backlight

You can adjust the backlight brightness with (values from 0-255):

echo 100 > /sys/class/backlight/pwm-backlight.0/brightness

7.4 Ethernet

To activate the ethernet port in Linux, you have to configure the network device first. For ex-
ample to use IP-Address 10.0.0.242, you can use the command

ifconfig eth0 10.0.0.242 netmask 255.0.0.0 up

Then you can use network commands, e.g.

ping 10.0.0.121

7.5 Telnet

If you want to use telnet to login from another PC, you have to start the telnet daemon

telnetd

However this service does not allow to log in as root from such an unsecure line. So you
have to add a second user.

adduser -D telnet
passwd -d telnet

The first commands adds a user called "telnet". The second command sets an empty pass-
word for this user.

Now you can log in from another PC with

telnet <ipaddr>

under username "telnet".

7.6 DirectFB

There are a few DirectFB examples included in the standard root filesystem:

Application Description

24

Using the Standard System and Devices

df_andi Show some walking penguins; you can add or remove some

df_dok benchmark 2D graphics (currently not accelerated!)

df_fire Show some fire (may use the wrong color map)

df_knuckles Show and rotate a skull

df_neo Show spinning objects

df_particles Show a particle stream

df_porter Show different transparency

df_window Show transparent windows, move with mouse

Table 6: DirectFB examples

Some of these programs must be stopped by pressing Ctl-C.

7.7 Serial

The serial ports are using special devices:

mknod /dev/ttySAC0 c 204 64
mknod /dev/ttySAC1 c 204 65
mknod /dev/ttySAC2 c 204 66

Listing 9: Creating UART device nodes

If you use the standard BuildRoot configuration, the devices are automatically created.

The default speed is 9600 bit/s with the exception of the default debug port (also used as
linux console) which is configured for 38400 bit/s in U-Boot.

Example:

echo Hello > /dev/ttySAC1

7.8 SPI

Currently there is one SPI device supported on SPI0 bus:

mknod /dev/spidev0.0 c 153 0
Listing 10: Creating SPI device node

25

Using the Standard System and Devices

In the standard configuration, these devices are automatically created. This device can be
used with the usermode spi driver (also called spidev).

There is also an SPI1 bus, but this bus is dedicated to the CAN controller and can't be used
for other purposes.

An example to access the SPI bus is located in the examples subdirectory (spi_adc0831.c).

7.9 CAN

The CAN driver uses Socket CAN, i.e. the CAN bus is accessed as a network device, similar
to an ethernet card. If the driver is available, you can find a can0 device when issuing the
command

ifconfig -a

But better use the newer ip program as the older ifconfig does not know anything more de-
tailed about CAN controllers.

ip link

Before you can activate this device, you have to set the baud rate. This is not done via the
/sys filesystem anymore. But instead it requires the ip program. For example to set 125000
bit/s for CAN and activate, you would issue the command:

ip link set can0 up type can bitrate 125000
Listing 11: Activate CAN device

Now you can create sockets that access the CAN device. Some examples are provided in
the examples subdirectory (can_tx.c, can_rx.c, candump.c, cansend.c).

7.10 SD-Card

if a Micro SD card is inserted in the slot on the board, it is detected automatically. Usually the
card has a partition on it. Therefore to mount the device you need the following devices:

mknod /dev/mmcblk0 b 179 0
mknod /dev/mmcblk0p1 b 179 1
mknod /dev/mmcblk1 b 179 8
mknod /dev/mmcblk1p1 b 179 9

Listing 12: Creating mmc device nodes

In the default configuration, these devices are created automatically after you insert the card.

26

Using the Standard System and Devices

Then you can mount and un-mount the device:

mount /dev/mmcblk0p1 /mnt
umount /mnt

7.11 USB-Stick (storage)

If a USB memory stick is inserted, it is available like a standard hard disk. As there is usually
no hard disk on the PicoMOD7A, it is found as /dev/sda. If you have partitions on your USB
stick, you have to access them as /dev/sda1, /dev/sda2 and so on. Otherwise you can use
/dev/sda directly. For example

mount /dev/sda /mnt

mounts the stick under the /mnt directory.

7.12 Touch

You can connect a 4-wire resistive touch or a capacitive touch (Atmel mxt224) to your
device. If the system registered the capacitive touch controller then this is used as the de-
fault tslib device. From the boot messages you see:

Configure input for: default-event0 S3C24XX TouchScreen

When starting Linux for the first time you need to calibrate your touch with:

mount -o remount,rw /
ts_calibrate

after that you can test with:

ts_test

To use the touch with Xserver you need to reboot after the calibration or restart with:

/etc/init.d/S35x11 stop
/etc/init.d/S35x11 start

7.13 RTC

You need following device node:

mknod /dev/misc/rtc c 254 0
Listing 13: Creating rtc device node

27

Using the Standard System and Devices

Setting date:

date -s '2012-01-25 10:18:00' +'%Y/%M/%d %T

Save current date to RTC:

hwclock –-systohc

Access RTC:

/sys/class/rtc/rtc0 and /proc/driver/rtc

Note:

connect 3.3V to VBAT on your PicoMOD7A base board.

7.14 PWM

You can access PWM with the Sysfs system. Set full backlight with:

echo 254 > /sys/class/backlight/pwm-backlight/brightness

Set backlight off:

echo 0 > /sys/class/backlight/pwm-backlight/brightness

7.15 GPIO

You can setup and use GPIOs with the Sysfs system.

ls /sys/class/gpio
export gpiochip137 gpiochip181 gpiochip226 gpiochip89
gpiochip0 gpiochip14 gpiochip188 gpiochip23 gpiochip47
…
unexport

Please refer the „PicoMOD7A GPIO Reference Card“ document to know how the pins of the
PicoMOD7A correspondent with the Sysfs-GPIO system.

Example:

Configure GPIO8 (PicoMOD7A: J10#18 / GPH3_0) as output pin:

echo 155 > /sys/class/gpio/export

This creates a new directory in /sys/class/gpio:

28

Using the Standard System and Devices

ls /sys/class/gpio/gpio155/
active_low direction edge power subsystem
uevent value

Set pin as output:

echo out > /sys/class/gpio/gpio155/direction

Set pin to high level:

echo 1 > /sys/class/gpio/gpio155/value

7.16 Sound

You need following device nodes:

mknod /dev/snd/controlC0 c 116 0
mknod /dev/snd/pcmC0D0c c 116 24
mknod /dev/snd/pcmC0D0p c 116 16
mknod /dev/snd/timer c 116 33

You can use standard Alsa tools to play and record sound. There is a tool to test the sound
output.

speaker-test -c 2 -t wav

This will say "Front left" and "Front right" on the appropriate line out channel. If you have a
WAV file to play, you can use this command:

aplay <file.wav>

To record a file from microphone in (mono), just call

arecord -c 1 -r 8000 -f s16_le -d <duration> <file.wav>

To record a file from line in, you first have to switch recording from microphone to line in.
This can be done with

amixer sset 'Capture Mux' LINE_IN

Then record the stereo file with high quality with

arecord -c 2 -r 48000 -f s16_le -d <duration> <file.wav>

To see what other controls are available, call amixer without arguments:

amixer

29

Using the Standard System and Devices

You can also use gstreamer to test sound.

gst-launch audiotestsrc ! Alsasink

And to play a WAV file with gstreamer, you can use the following command:

gst-launch filesrc location=<file.wav> ! wavparse ! alsasink

7.17 Video

A quick video test can be done with:

gst-launch videotestsrc ! fbdevsink

7.18 Pictures

There is a small image viewer program included called fbv. Just call it with the list of images
to show. This will show a new image every second.

fbv -s 10 /usr/share/directfb-examples/*.png

To show possible program options use:

fbv --help

7.19 TFTP

There is a short program to download a file from a TFTP server. This can be rather useful to
get some files to the board without having to use a memory device like SD card or USB
stick. For example to load a file song3.wav from the TFTP server with IP address
192.168.1.35, just call

tftp -g -r song3.wav 192.168.1.35

7.20 SSH

You can connect to your device by SSH. Therefore you need to set a password for your root
user

passwd

or create a new user by:

adduser <username>

30

Using the Standard System and Devices

Now you can connect via SSH by any host in the network with:

ssh <username>@<device-ip>

7.21 VNC

If you have no display attached or you want to connect by remote you can start the pre-in-
stalled (with the standard buildroot root filesystem) x11vnc program on your device by:

x11vnc

On any host in the network install a vnc-viewer program and connect to your board with:

vncviewer <device-ip>:0

31

Cross-Compile Toolchain

8 Cross-Compile Toolchain
The cross-compile toolchain is needed to compile U-Boot, the Linux Kernel and the Buildroot
package. We would recommend to install it globally, for example in a directory
/usr/local/arm. First create the directory and unpack the file from the toolchain subdirectory.

su
mkdir /usr/local/arm
cd /usr/local/arm
tar jxvf fs-toolchain-<version>.tar.bz2

Listing 14: Installing Cross-Compile Toolchain

This will create a subdirectory fs-toolchain-<version> with the cross-toolchain. Then exit
again from superuser:

exit

Now add the this directory to your global PATH variable and set an environment variable
ARCH for compiling the Linux kernel:

export PATH=$PATH\:/usr/local/arm/fs-toolchain-<version>/bin
export ARCH=arm

(You probably have to edit some global or local bash profile to make these two

environment changes permanent.)

32

Compiling U-Boot

9 Compiling U-Boot
The U-Boot source can be unpacked to your local home directory:

tar jxvf u-boot-<Packageversion>-f+s-V<x>.<y>.tar.bz2

This will create directory u-boot-<Packageversion>-f+s. It alread contains a predefined con-
figuration for F&S platforms. Simply run

cd u-boot-<Packageversion>-f+s-V<x>.<y>
make <Architecturename>_config

Listing 15: Setup default u-boot board configuration

This will activate the correct header files. Now you can build the bootloader with

make

This will create the file uboot.nb0, that can be downloaded to your board (either in NBoot or
the currently installed U-Boot). The file is exactly 384KB in size (393216 bytes). The build
process will also create a slightly smaller uboot.fs. This file can be used for serial download
in NBoot only, but results in a slightly faster download there (due to the smaller size).

33

Compiling the Linux Kernel

10 Compiling the Linux Kernel
The kernel source can be unpacked to your local home directory:

tar jxvf linux-<Packageversion>-f+s-V<x>.<y>.tar.bz2

This will create directory linux-<Packageversion>-f+s-V<x>.<y> with the Linux source code.
It already contains a predefined configuration for F&S platforms. Please verify that you have
set environment variable ARCH to the value "arm" or the make tool will search the wrong dir-
ectory for the default configuration (see installation of the toolchain above). Now simply run

cd linux-<Packageversion>-f+s-V<x>.<y>
make <Architecture>_defconfig

Listing 16: Setup default linux kernel board configuration

This will create the .config file. Then just run

make menuconfig

to modify your settings and then run

make

The final kernel image is in

arch/arm/boot/zImage

34

Compiling Buildroot

11 Compiling Buildroot
The basic idea of the F&S' boards root filesystem is the so-called Buildroot environment.
Buildroot is an open source project. It allows to build a root filesystem for an embedded sys-
tem simply by using the original sources of the individual packages. The benefit of Buildroot
is:

● Knows all the web sites where to download the packages

● Knows how to modify the packages to be cross-compiled

● Knows how to combine the packages in a single root filesystem (i.e. it knows about
all the dependencies between the packages)

● Has a powerful menu system to select which packages should be included in the root
filesystem

To compile an own root filesystem, you can unpack the provided Buildroot package to your
home directory.

tar jxvf buildroot-<Packageversion>-f+s-V<x>.<y>.tar.bz2

This will create the directory with the source code. Switch to it:

cd buildroot-<Packageversion>-f+s-V<x>.<y>

It already contains two predefined configurations for each board: the standard configuration
that we use for our default root filesystem and a minimal configuration.

Boardname Configuration Description

PicoCOM4 picocom4_min_defconfig Minimal configuration with busybox and iproute2.
Toolchain: fs-toolchain-4.6.3-armv4t

PicoCOM4 picocom4_std_defconfig Standard configuration with busybox, iproute2, dir-
ectfb, Alsa-Utils, Gstreamer, Xorg7 and Matchbox.
Toolchain: fs-toolchain-4.6.3-armv4t

PicoMOD7A picomod7a_min_defconfig Minimal configuration with busybox and iproute2.
Toolchain: fs-toolchain-4.6.3-armv6-vfp

PicoMOD7A picomod7a_std_defconfig Standard configuration with busybox, iproute2, dir-
ectfb, Alsa-Utils, Gstreamer, Xorg7 and Matchbox.
Toolchain: fs-toolchain-4.6.3-armv6-vfp

armStoneA8 armstonea8_min_defconfig Minimal configuration with busybox and iproute2.
Toolchain: fs-toolchain-4.6.3-armv6-vfp

armStoneA8 armstonea8_std_defconfig Standard configuration with busybox, iproute2, dir-
ectfb, Alsa-Utils, Gstreamer, Xorg7 and Matchbox.

35

Compiling Buildroot

Toolchain: fs-toolchain-4.6.3-armv6-vfp

NetDCU14 netdcu14_min_defconfig Minimal configuration with busybox and iproute2.
Toolchain: fs-toolchain-4.6.3-armv6-vfp

NetDCU14 netdcu14_std_defconfig Standard configuration with busybox, iproute2, dir-
ectfb, Alsa-Utils, Gstreamer, Xorg7 and Matchbox.
Toolchain: fs-toolchain-4.6.3-armv6-vfp

Simply run

make <Platformname>_std_defconfig
Listing 17: Setup default buildroot board configuration

or

make <Platformname>_min_defconfig

Note: <Platformname> has to be lower case letters.

This will create the .config file. Then just run

make menuconfig

to modify your settings. There it is especially important to set the path to the toolchain. If you
installed it in /usr/local/arm, then everything will work automatically. If not, then go to item
"Toolchain", select "Toolchain path" and enter the path to your toolchain (including the dir-
ectory fs-toolchain-<version>). Then you can exit make menuconfig. Don't forget to save
your new configuration by saying "yes" when asked. Then run

make

to build the whole system.

When Buildroot starts to work, it downloads all the required packages from the original web-
sites, configures and makes them and finally builds the root filesystem image. The default
configuration creates an ext2 filesystem suited to be mounted via NFS and a UBIFS image
suited to be installed on the board directly.

Compiling Buildroot the first time may take quite a while, probably more than an hour even
on a very fast computer, so don't be surprised. But later when only updating minor modifica-
tions need to be done, compilation is usually done in a few minutes.

36

Compiling Buildroot

The standard configuration is meant to experiment with the board. You can add and remove
packages to see how these packages work. Adding packages should usually be straightfor-
ward. However removing packages is not always this easy, as Buildroot does not keep track
of what files of the root filesystem belongs to which package. Therefore it can not take out
such files and they remain present in the root filesystem even if the corresponding package
is removed from the Buildroot configuration. Just ignore this and go with the new packages.
If things get too mixed up, you can always do a full rebuild with

make clean
make

The minimum configuration is meant as a clean starting point for your own system. Start with
the busybox only and then add one by one the tools and libraries that you need in your sys-
tem. Avoid removing packages for the reasons explained above. Then you'll get an optimal
and minimal root filesystem suited for your needs.

37

Hello World

12 Hello World
First you need to install the cross-compilation toolchain like described earlier in this docu-
ment. Then you setup your environment:

export PATH=$PATH:/usr/local/arm/fs-toolchain-<version>/bin
export ARCH=arm
export CROSS_COMPILE=arm-linux-

Listing 18: Setup cross-compile environment

You can check which cross-compiler you set by

which arm-linux-gcc
/usr/local/arm/fs-toolchain-4.6.3-armv6-vfp/bin/arm-linux-gcc

12.1 Create your source file

Change to your development directory, create a new one and change to it. Then create the
source file like:

mkdir helloworld
cd helloworld/
vim main.c

Modify your source file with typical „hello world“ source code:

#include <stdlib.h>

#include <stdio.h>

int main (void) {

 printf("Hello World... \n\n");

 return 1;

}

Listing 19: Hello World application

12.2 Compile your source file

As you targeting to run your application on a F&S board, which is based on a ARM pro-
cessor, you need to cross-compile your application with

arm-linux-gcc -o helloworld main.c

38

Hello World

12.3 Run your application on the device

After you cross-compiled your application it is ready to run on the target. You can run it on
the target from MMC, USB Stick or you can copy it to internal NAND flash by network and
execute it with:

ifconfig eth0 <ipaddr> netmask <netmask> up
tftp -g -r helloworld <serverip>
chmod a+x helloworld
./helloworld

39

Debugging

13 Debugging
Create an application like:

//DebugApp

#include <stdlib.h>

#include <stdio.h>

int main (void) {

int a,b,c = 0;

a = 1;

b = 2;

c = a + b;

return c;

}

Copy the executable to your device and start GDB with:

gdbserver <Host-IpAddress>:<Port> DebugApp
Process secondtest created; pid = 808
Listening on port <Port>
Remote debugging from host <Host-IpAddress>

On your development host run:

$ arm-linux-gdb
GNU gdb 6.8
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute
it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-build_pc-linux-gnu –
target=arm-fs-linux-gnueabi".

Then connect ro your remote device with:

(gdb) target remote <Remote-IpAddress>:<Port>
Remote debugging using <Remote-IpAddress>:<Port>
[New Thread 808]
0xb6f58d50 in ?? ()

40

Debugging

Select the debug executable:

(gdb) file /workspace/DebugApp/Debug/DebugApp
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from /workspace/DebugApp/Debug/DebugApp...done.

Setup a breakpoint with:

(gdb) break 13
Breakpoint 1 at 0x83a8: file ../main.c, line 13.

Start execution with:

(gdb) continue
Continuing.

Breakpoint 1, main () at ../main.c:13
13 a = 1;

Step by:

(gdb) step
14 b = 2;
(gdb) step
15 c = a + b;
(gdb) display c
1: c = 0
(gdb) step
16 return c;
1: c = 3
(gdb) display c
2: c = 3
(gdb) continue
Continuing.

Program exited with code 03.
(gdb)

41

IDE - Eclipse

14 IDE - Eclipse
Install Eclipse on your development host with your Linux Distribution specific package man-
ager system. On Fedora do:

sudo yum install eclipse

Then setup environment and start eclipse:

export PATH=$PATH:/usr/local/arm/fs-toolchain-4.6.3-armv6-vfp/bin
export ARCH=arm
eclipse &

Install Cross Development tools:

C/C++ Remote Launch
TCF Remote System Explorer add-in
Remote System Explorer End-User Runtime
C/C++ GDB Hardware Debugging
TCF C/C++ Debugger
C/C++ GCC Cross Compiler Support
Autotools support for CDT
CDT Visual C++ Support

From Help – Install New Software

42

IDE - Eclipse

14.1 Create a Project

After all dependencies are installed within eclipse you can create a new project. From File
select New and then C Project. Then click on Next. On the next dialog fill in a project name
and select Empty Project from Executable. Select Cross GCC as toolchain.

43

IDE - Eclipse

Click on Next and setup toolchain:

14.2 Setup Properties

Do a right click on the project in the workspace view and choose Properties and then C/C++
Build.

Discovery Options: check Compiler inovacation command is set to arm-linux-gcc

Environment: check that PATH is set to fs-toolchain

From Settings – Cross GCC Compiler – Includes add Buildroot sysroot path to Include paths
(sysroot/usr/include):

44

IDE - Eclipse

From Settings – Cross GCC Linker – Libraries add Buildroot sysroot path to Library search
path (sysroot/lib):

14.3 Add a source file and build the project

Do a right click on the project and select New – Source File. Write your main function.

#include <stdio.h>

#include <stdlib.h>

int main (void){

printf("Hello Universe.. \n");

system("/bin/touch /home/helloND1.txt");

return 1;

}

and build the application by right click on the project and choose Build project.

14.4 Remote connection

From Window – Open Perspective – Other... choose Remote System Explorer. Then click
on Define a connection to a remote system and select SSH Only.

45

IDE - Eclipse

Enter Hostname/Ipaddress:

14.4.1 Connect and test

Do a right click on your remote host from the Remote Systems view and choose Connect.
Enter User ID (root) and password (create a password for user root with passwd on the
device). Then again, do a right click on Ssh Terminals and choose Launch Terminal.

46

IDE - Eclipse

14.5 Run your application

From Run – Run configurations – C/C++ Remote Application set Connection to your remote
machine. Set Remote Absolute File Path for C/C++ Application to /home/<myapp>. And set
Commands to execute before application to chmod a+x /home/<myapp>. Then click on Ap-
ply and then on Run.

14.6 Debug your application

From Run – Debug configurations – C/C++ Remote Application set Connection to your re-
mote machine. Set Remote Absolute File Path for C/C++ Application to /home/<myapp>.
And set Commands to execute before application to chmod a+x /home/<myapp>. Then click
on Apply and then on Run.

47

Appendix

15 Appendix

Listings

Listing 1: Nboot menu...12

Listing 2: Updating U-Boot via SD-Card..13

Listing 3: U-Boot running installation script from sd card..14

Listing 4: U-Boot flashing Linux kernel image from sd card..14

Listing 5: U-Boot flashing root file system from sd card..15

Listing 6: Linux kernel image bootargs for nfsroot...20

Listing 7: Linux kernel image bootargs for RFS as UBIFS..20

Listing 8: Using Sysfs to examine devices..21

Listing 9: Creating UART device nodes..25

Listing 10: Creating SPI device node..25

Listing 11: Activate CAN device..26

Listing 12: Creating mmc device nodes..26

Listing 13: Creating rtc device node..27

Listing 14: Installing Cross-Compile Toolchain..32

Listing 15: Setup default u-boot board configuration...33

Listing 16: Setup default linux kernel board configuration...34

Listing 17: Setup default buildroot board configuration...36

Listing 18: Setup cross-compile environment...38

Listing 19: Hello World application..38

List of Figures

Figure 1: Components of a Linux system..1

Figure 2: armStoneA8 Starterkit..4

Figure 3: PicoMOD7A Starterkit (top)..5

Figure 4: PicoMOD7A Starterkit (bottom)..5

Figure 5: NetDCU14 Starterkit..6

48

Appendix

List of Tables

Table 1: F+S Platforms...8

Table 2: F+S Architectures..8

Table 3: Content of the created release directory...10

Table 4: U-Boot network settings..16

Table 5: Serial debug ports...20

Table 6: DirectFB examples..25

49

Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product spe-
cifications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.

Products are not designed, intended, or authorised for use as components in systems inten-
ded for applications intended to support or sustain life, or for any other application in which
the failure of the product from F&S Elektronik Systeme could create a situation where per-
sonal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorised application, the Buyer shall in-
demnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affili-
ates, and distributors harmless against all claims, costs, damages, expenses, and reason-
able attorney fees arising out of, either directly or indirectly, any claim of personal injury or
death that may be associated with such unintended or unauthorised use, even if such claim
alleges that F&S Elektronik Systeme was negligent regarding the design or manufacture of
said product.

50

	1 Introduction
	2 Development Environment
	2.1 Starterkit
	2.1.1 armStoneA8
	2.1.2 PicoMOD7A
	2.1.3 NetDCU14

	3 Download Area
	4 Bringing up the system
	4.1 Check NBoot version
	4.2 Load and Save U-Boot
	4.3 Load and Save Linux Kernel Image
	4.4 Load and Save Root File System

	5 Updating
	5.1 USB Stick

	6 Switching Boot Strategies
	7 Using the Standard System and Devices
	7.1 The Sysfs
	7.2 GUI
	7.2.1 HDMICFG
	7.2.2 Setup display

	7.3 Backlight
	7.4 Ethernet
	7.5 Telnet
	7.6 DirectFB
	7.7 Serial
	7.8 SPI
	7.9 CAN
	7.10 SD-Card
	7.11 USB-Stick (storage)
	7.12 Touch
	7.13 RTC
	7.14 PWM
	7.15 GPIO
	7.16 Sound
	7.17 Video
	7.18 Pictures
	7.19 TFTP
	7.20 SSH
	7.21 VNC

	8 Cross-Compile Toolchain
	9 Compiling U-Boot
	10 Compiling the Linux Kernel
	11 Compiling Buildroot
	12 Hello World
	12.1 Create your source file
	12.2 Compile your source file
	12.3 Run your application on the device

	13 Debugging
	14 IDE - Eclipse
	14.1 Create a Project
	14.2 Setup Properties
	14.3 Add a source file and build the project
	14.4 Remote connection
	14.4.1 Connect and test

	14.5 Run your application
	14.6 Debug your application

	15 Appendix
	Listings
	List of Figures
	List of Tables
	Important Notice

