Hardware Documentation

armStone™A9

Version 104 (2020-07-17)

© F&S Elektronik Systeme GmbH Untere Waldplätze 23 D-70569 Stuttgart

Phone: +49(0)711-123722-0 Fax: +49(0)711-123722-99

About This Document

This document describes how to use the arnStone™A9 board with mechanical and electrical information. The latest version of this document can be found at:

http://www.fs-net.de.

ESD Requirements

All F&S hardware products are ESD (electrostatic sensitive devices). All products are handled and packaged according to ESD guidelines. Please do not handle or store ESD-sensitive material in ESD-unsafe environments. Negligent handling will harm the product and warranty claims become void.

History

Date	٧	Platform	A,M,R	Chapter	Description	Au	
2013-02-19	0.01	ASA9	Α	*	First Preliminary version	KW	
2013-11-15	0.02	ASA9	М	<u>4</u> <u>5.1</u>	Correct signal name conventions, correct pins for COM Adjust TDP	KW	
2014-03-06	0.03	ASA9	A M	<u>4</u> <u>0</u>	Connector layout additions	KW	
2014-03-14	0.04	ASA9	Α	4.11.5 2,3	Add note it is optional Add SATA with limitations		
2014-08-15	0.04	ASA9	М	*	Change to New Company Cl	JG	
2014-10-02	0.05	ASA9	A A A	5-2 0 4	Add cooling notes Add backlight wiring description Note for JILI30 pin 1		
2014-10-14	0.06	ASA9	Α	<u>4.11.5</u> <u>5.2</u>	Correct to ADS1015 Add electrical data for 3.3V IO		
2014-10-16	0.06	ASA9	Α	4.11.4	Information about I2C interfaces	HF	
2014-10-18	0.07	ASA9	Α	4.11.4	Correct information about SPI		
2014-12-02	0.07	ASA9	М	<u>4.8</u>	Correct article numbers for touch modules		
2014-12-10	0.08	ASA9	М	<u>4.6.1</u>	Correct pin 24		
2015-01-08	0.09	ASA9	М	<u>4.6.14.11</u> <u>4.11.10</u>	Remove the optional CAN Transceiver		
2015-02-05	0.10	ASA9	М	0	Add notice for pull-up at touch con.	HF	
2015-06-15	0.11	ASA9	Α	<u>5.1</u>	Add TDP for Solo and Duallight	KW	
2016-10-16	0.12	ASA9	M A	<u>4.11.7</u> <u>6,7,8</u>	Correct PU to COL Add some chapter for Storage, ROHS, Barcode Sticker		
2017-01-03	100	ASA9	Α	<u>4.6.2</u> 4.6,5.1	Add missing I2C signals Add VLCD max current		
2017-11-13	101	ASA9	М		Index refreshed	HF	
2018-09-14	102	ASA9	Α	<u>6</u>	Extend thermal specification	HF	
2020-06-08	103	ASA9	М	2	Corrct PCB thickness and update to new F&S Layout	MW	
2020-07-17	104	ASA9	Α	<u>7</u>	Add ADP-NT24V2	MW	

V Version

A,M,R Added, Modified, Removed

Au Author

Table of Contents

Ak	out This	Document	2
ES	D Requir	rements	2
Hi	story		2
Та	ble of Co	ontents	3
1	Block	diagram	5
2		anical Dimension	6
3	Techn	ical Data armStoneA9	7
•	3.1	Technical Data	_
	3.2	Thermal Specification	8
4	Interfa	aces	9
	4.1	Gbit Ethernet LAN	10
	4.2	USB Hoct Connector	10
	4.3	USB Device Connector	10
	4.4	Digital Monitor Connector	10
	4.5	microSD Connector	10
	4.6	LVDS Connectors	10
	4.6.1	F&S JAE FI-S25P connector on top side	10
	4.6.2	JILI30 JAE FI-X30S connector on bottom side	13
	4.7	ESDCI RGB connector	14
	4.8	Backlight control connector	15
	4.8.1	Solution with a single cable with 3 connectors	15
	4.8.2	Solution with 2 cable with 2 connectors each	16
	4.9	I2C connector for touch module	17
	4.10	Mini PCI Express	17
	4.11	66 Pin Feature connector	18
	4.11.1	Audio	20
	4.11.2	RS232 COM port	20
	4.11.3	TTL COM port	20
	4.11.4	I2C/ SPI	21
	4.11.5	ADC In	21
	4.11.6	PWM out	21
	4.11.7	Matrix keyboard	21
	4.11.8	GPIOs	21
	4.11.9	MISC signals, power	22
	4.11.10	CAN Bus	22
	4.12	Power connector	23

5	Electrical characteristic	24
	5.1 Absolute maximum ratings	24
	5.2 DC Electrical Characteristics	24
6	Thermal Specification	25
7	ADP-NT24V2	26
8	Review service	26
9	Second source rules	26
10	Power consumption and cooling	26
11	Storage conditions	27
12	ROHS and REACH statement	27
13	Packaging	28
14	Matrix Code Sticker	28
15	Appendix	29
	Important Notice	29
	Warranty Terms	30
16	Content	31

1 **Block diagram**

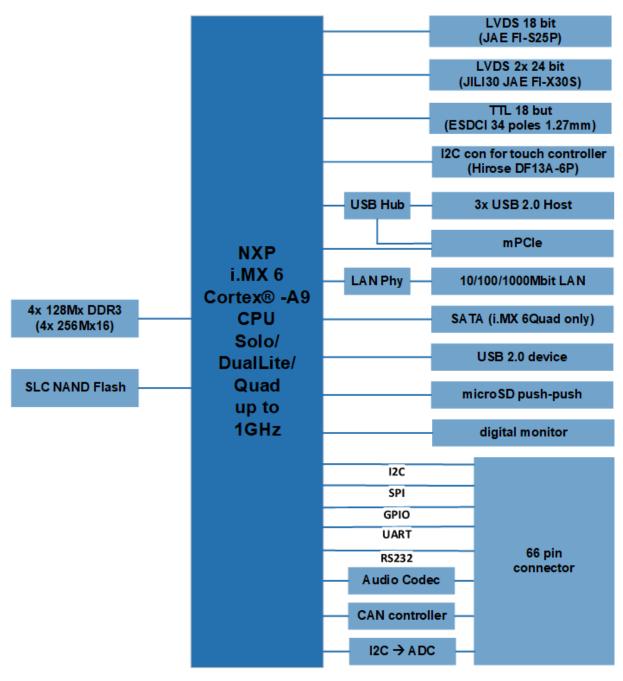


Figure 1: Block Diagram

2 Mechanical Dimension

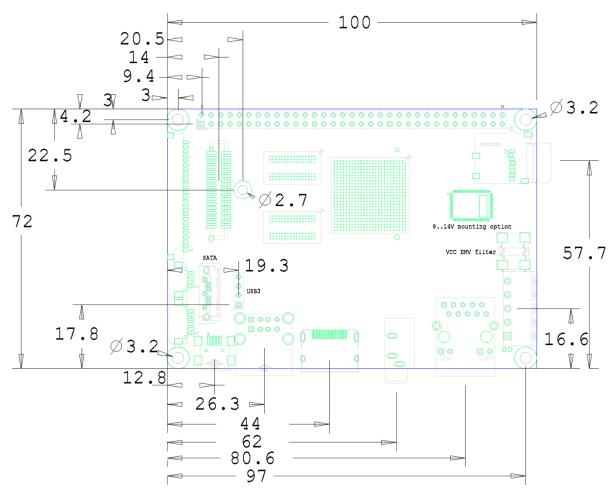


Figure 2: Mechanical Dimension

Dimensions	Description
Size	472mm x 100mm (picoITX)
PCB Thickness	1.6mm ± 0.1mm
Height of the parts on the top side	Max. 15mm
Height of the parts on the bottom side	Max. 16mm

Table 1: Mechanical Dimensions

3D Step model available, please contact support@fs-net.de

3 Technical Data armStoneA9

3.1 Technical Data

Power supply: 5V DC ±5%, optional 8..14V DC Interfaces: 1x Ethernet 10/100/1000Mbit

4x USB 2.0 Host 1x USB 2.0 Device 1x digital monitor

1x microSD card connector push-push

1x mPCle

1x SATA (only with quad core CPU)

1x I2C for touch module

1x stereo Audio LineIn, LineOut, Mic

2x serial port RS232 1x serial port TTL

4x ADC In (10 bit, 500kSPS, optional on custom version)

3x PWM out

1x I2C 1x SPI 17x GPIO

LCD-interfaces: 1x 18bit LVDS F&S JAY FI-S25P

1x 2x 24bit LVDS JILI30

1x 18bit TTL ESDCI

Memory: 1 GByte DDR3 DRAM (optional 2GB)

128 MByte NAND Flash (optional up to 32 GByte)

CPU: Freescale i.MX6 Solo, DualLite or Quad Core

(Optional several temperature and frequency)

3.2 Thermal Specification

	Min	Тур	Max	Unit
Operating temperature	0		+70 ¹	°C
Operating temperature ("I") ²	-20		+85 ¹	°C
Junction temperature i.MX6	-20		+105	°C
Junction temperature i.MX6 ("I") ²	-20		+105	°C
Junction to Top of i.MX6 (Psi-JT) ³		2		°C/W

Table 2: Thermal Specification

Depending on cooling solution. See	1	See also
------------------------------------	---	----------

² Optional

³ Temperature difference between package top and the junction temperature per JEDEC JESD51-2.

4 Interfaces

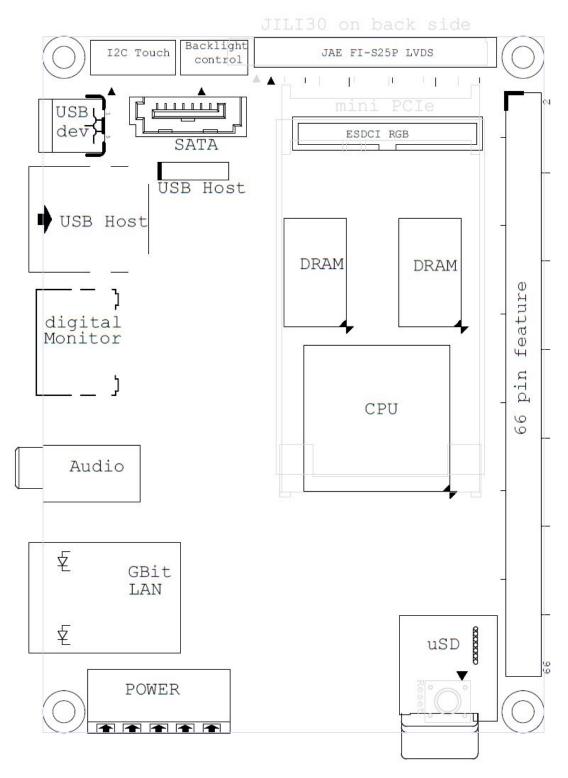


Figure 3: Connector Layout

Note: there is a wrong pin 1 marker on the JILI30 connector on back side. The inner pin is pin 1. The picture above is right. This marking failure will occur up to PCB Rev 1.10.

4.1 Gbit Ethernet LAN

The LAN1 connector does support 10, 100 and 1000 Mbit LAN.

4.2 USB Hoct Connector

The double USB Host connector does support USB2.0 connection with High speed up to 480Mbit/s and also full and low speed devices.

The on-board pin connector for internal USB does have the following pin out.

Pin	Signal	I/O	Voltage	Remarks
1	+5V	PWR	5.0V	shared with resettable fuse from front port connector
2	USB3-	I/O		
3	USB3+	I/O		
4	GND	PWR		

Table 3: USB OTG & Host Interface Connections

The signals on the internal connector doesn't have EMV filter.

The power on the 5V line is equipped with a resettable fuse with 1100mA for both front connected port and the internal port together. At 70°C the summary current is limited to 650mA.

Current consuming summary of all ports shouldn't exceed maximum power consuming limit on the 5V path.

4.3 USB Device Connector

The USB device connects the armStoneA9 as device on a PC.

4.4 Digital Monitor Connector

A digital monitor can connected to the board. This interface supports up to 1080p 60Hz.

4.5 microSD Connector

The microSD push-push connector supports the SD Standard Host Specification Version 2.0 standard.

4.6 LVDS Connectors

4.6.1 F&S JAE FI-S25P connector on top side

The single channel LVDS display port on top side can be direct connected to a LVDS 18 or 24 bit display.

The VLCD voltage is 3.3V and switched on the baseboard. The current limit is 1.2 A.

Connector is a JAE FI-S25P-HFE. Matching connector on display cable is a crimp connector FI-S25S housing and a cable with FI-C3-A1-15000 crimp contacts.

This connector is used because a wide range of displays does have a JAE FI-S series connector (with different pinouts) and it's easy to handle identical crimp contacts for the cable manufacturer.

LCE	FI-S25S Connect	tor		
Pin	Signal	I/O	Voltage	Remarks
1	VLCD	PWR	3.3V	Switched, max. 300mA
2	VLCD	PWR	3.3V	Switched, max. 300mA
3	GND	PWR		
4	GND	PWR		
5	LVDS0_DATA0-	0		
6	LVDS0_DATA0 +	0		
7	GND	PWR		
8	LVDS0_DATA1-	0		
9	LVDS0_DATA1 +	0		
10	GND	PWR		
11	LVDS0_DATA2-	0		
12	LVDS0_DATA2 +	0		
13	GND	PWR		
14	LVDS0_CLK-	0		
15	LVDS0_CLK+	0		
16	GND	PWR		
17	LVDS0_DATA3-	0		
18	LVDS0_DATA3 +	0		
19	GND	PWR		
20	n.c.	-		
21	n.c.	-		
22	GND	PWR		
23	n.c.	-		
24	Backlight on	0	3.3V	High active CMOS logic
25	Backlight PWM	0	3.3V	CMOS logic

Table 4: Single channel LVDS connector

Pin 1 is marked on the connector with an arrow and also marked on PCB.

The single channel LVDS port can be direct connected to a LVDS 18 bit display.

Unused signals should be left unconnected.

4.6.2 JILI30 JAE FI-X30S connector on bottom side

The dual channel LVDS display port can be direct connected to a LVDS 18 or 24 bit single channel or dual channel display.

The signals for the first channel are shared with the other connector 4.6.1.

By connecting 2 single channel displays to the board we recommend to use the top connector for the first channel and the second channel of the bottom connector for the second display.

LCE	FI-X30P Connector			
Pin	Signal	I/O	Voltage	Remarks
1	LVDS0_DATA0-	0		shared with FI-S25P on top side
2	LVDS0_DATA0+	0		shared with FI-S25P on top side
3	LVDS0_DATA1-	0		shared with FI-S25P on top side
4	LVDS0_DATA1+	0		shared with FI-S25P on top side
5	LVDS0_DATA2-	0		shared with FI-S25P on top side
6	LVDS0_DATA2+	0		shared with FI-S25P on top side
7	GND	PWR		
8	LVDS0_CLK-	0		shared with FI-S25P on top side
9	LVDS0_CLK+	0		shared with FI-S25P on top side
10	LVDS0_DATA3-	0		shared with FI-S25P on top side
11	LVDS0_DATA3+	0		shared with FI-S25P on top side
12	LVDS1_DATA0-	0		
13	LVDS1_DATA0+	0		
14	GND	PWR		
15	LVDS1_DATA1-	0		
16	LVDS1_DATA1+	0		
17	GND	PWR		
18	LVDS1_DATA2-	0		
19	LVDS1_DATA2+	0		
20	LVDS1_CLK-	0		
21	LVDS1_CLK+	0		
22	LVDS1_DATA3-	0		
23	LVDS1_DATA3+	0		
24	GND	PWR		
25	I2C_C_DAT	I/O	3.3V	4,7kΩ Pull Up onboard
26	Backlight on	0	3.3V	High active CMOS logic
27	I2C_C_CLK	I/O	3.3V	4,7kΩ Pull Up onboard
28	VLCD	PWR	3.3V	Switched, max. 300mA
29	VLCD	PWR	3.3V	Switched, max. 300mA
30	VLCD	PWR	3.3V	Switched, max. 300mA

Table 5: JILI30 dual channel LVDS connector

4.7 ESDCI RGB connector

Connector is a 1.27mm pitch shrouded header for 1.27mm pitch IDC connector.

All signals have 3.3V level. I2C signals are for touch controller and to control the backlight on display adapter.

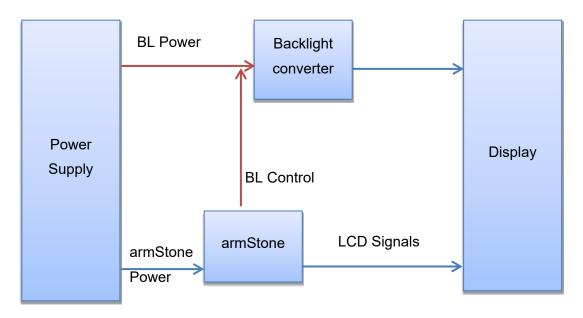
Pin	Signal	I/O	Voltage	Remarks
1	+V3.3	PWR	3.3V	Max. 100mA
2	+V5.0	PWR	5.0V	Max. 100mA
3	GND	PWR		
4	LCD_CLK	0		
5	LCD_HSYNC	0		
6	LCD_VSYNC	0		
7	GND	PWR		
8	LCD_R0	0		
9	LCD_R1	0		
10	LCD_R2	0		
11	LCD_R3	0		
12	LCD_R4	0		
13	LCD_R5	0		
14	GND	PWR		
15	LCD_G0	0		
16	LCD_G1	0		
17	LCD_G2	0		
18	LCD_G3	0		
19	LCD_G4	0		
20	LCD_G5	0		
21	GND	PWR		
22	LCD_B0	0		
23	LCD_B1	0		
24	LCD_B2	0		
25	LCD_B3	0		
26	LCD_B4	0		
27	LCD_B5	0		
28	GND	PWR		
29	LCD_DE	0		
30	VLCD	PWR	3.3V	Switched, max. 300mA, usable as VL-CDON
31	VLCD	PWR	3.3V	Switched, max. 300mA, usable as VL-CDON
32	I2C_DAT	I/O	3.3V	shared with I2C connector for touch module, 4,7k Ω PullUp onboard

33	I2C_IRQ	I	3.3V	shared with I2C connector for touch module
34	I2C_CLK	1/0	3.3V	shared with I2C connector for touch module, $4,7k\Omega$ PullUp onboard

Table 6: Digital RGB display connector

4.8 Backlight control connector

The connector is a Hirose 4 pin connector, model no. DF13A-4P-1.25H, mounted on the QB-lissA8 module. Pin 1 is marked on PCB.


Matching connector is a Hirose DF13-4S-1.25C with DF13-2630SCF crimping contacts.

Unused signals should be left unconnected.

Pin	Signal	I/O	Voltage	Remarks
1	VLCDON	0	3.3V	3.3V TTL level control signal; not used for backlight
2	Backlight On	0	3.3V	3.3V TTL level control signal, no power out
3	Backlight PWM	0	3.3V	3.3V TTL level control signal
4	LCD_CLK	PWR		

Table 7: Backlight control connector

4.8.1 Solution with a single cable with 3 connectors

Cable with 3 connector

Figure 4: backlight connection with single cable

4.8.2 Solution with 2 cable with 2 connectors each

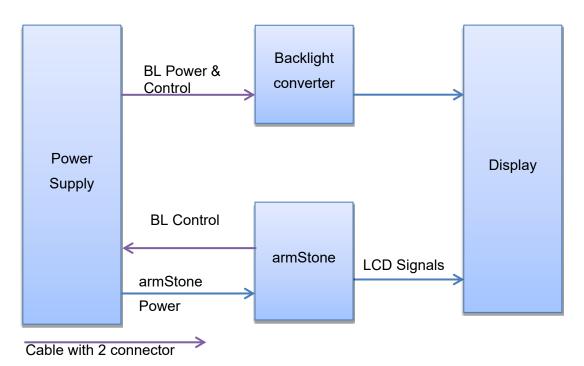


Figure 5: backlight connection with 2 cable

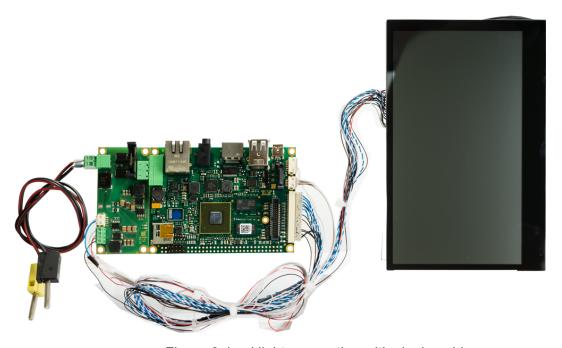


Figure 6: backlight connection with single cable

4.9 I2C connector for touch module

This connector is to connect the F&S SINTF-ADP-CTOUCH or SINTF-ADP-RTI2C. SINTF-ADP-CTOUCH module is based on Atmel mXT224 maxTouch chip working with several capacitive touch glasses.

The SINTF-ADP-RTI2C is based on Semtech SX8655 for 4 and 5 wire touch.

The connector is a Hirose 6 pin connector, model no. DF13A-6P-1.25H, mounted on the arm-StoneA9 module. Pin 1 is marked on PCB.

Matching connector is a Hirose DF13-6S-1.25C with DF13-2630SCF crimping contacts.

Signals are shared with I2C interface on ESDCI RGB connector for the same functionality..

Unused signals should be left unconnected.

Pin	Signal	I/O	Voltage	Remarks
1	VCC	PWR	3.3V	
2	I2C_DAT	I/O	3.3V	
3	I2C_CLK	I/O	3.3V	
4	I2C_RST	0	3.3V	Active LOW Signal
5	I2C_IRQ	ı	3.3V	Active LOW Signal
6	GND	PWR		

Table 8: I2C Touch Interface

4.10 Mini PCI Express

One 52 pin Mini-PCI-Express socket for a full-size 30x50,95 mm card is mounted on the arm-StoneA9. This socket does provide a PCIe channel x1 and one USB port.

4.11 66 Pin Feature connector

This 2.54mm connector supports CAN, RS232, Audio, ADC Input, PWM output, TTL serial ports, keyboard matrix and GPIOs.

Pin	Signal	I/O	Voltage	Remarks
1	VCC 3.3V	PWR	3.3V	
2	VCC 5.0V	PWR	5.0V	
3	XGPIO0/COL0	I/O	3.3V	
4	XGPIO1/COL1	I/O	3.3V	
5	XGPIO2/COL2	I/O	3.3V	
6	XGPIO3/COL3	I/O	3.3V	
7	XGPIO4/COL4	I/O	3.3V	
8	XGPIO5/COL5	I/O	3.3V	
9	XGPIO6/COL6	1/0	3.3V	
10	XGPIO7/COL7	I/O	3.3V	
11	GND	PWR		
12	XGPIO8/SPI_CLK	1/0	3.3V	
13	TX1/GPIO0	1/0	3.3V	
14	XGPIO9/SPI_CSn	I/O	3.3V	Active LOW Signal
15	RX1/GPIO1	I/O	3.3V	
16	I2CLK/SPI_MOSI	I/O	3.3V	
17	I2DAT/SPI_MISO	I/O	3.3V	
18	XGPIO10/ROW0	I/O	3.3V	
19	XGPIO11/ROW1	I/O	3.3V	
20	XGPIO12/ROW2	I/O	3.3V	
21	XGPIO13/ROW3	1/0	3.3V	
22	XGPIO14/ROW4	I/O	3.3V	
23	XGPIO15/ROW5	1/0	3.3V	
24	XGPIO16/ROW6	1/0	3.3V	
25	XGPIO17/ROW7	I/O	3.3V	
26	XGPIO18	I/O	3.3V	
27	GND	PWR		
28	PWMOUT0	0	3.3V	
29	ADC_IN0	I	3.3V	
30	PWMOUT1	0	3.3V	
31	ADC_IN1	I	3.3V	
32	PWMOUT2	0	3.3V	
33	ADC_IN2	I	3.3V	
34	Backlight On	0	3.3V	

35	ADC_IN3	1	3.3V	
36	RXD2	1	3.3V	RS232 Signal
37	GND	PWR		
38	TXD2	0	3.3V	RS232 Signal
39	VCC 3.3V	PWR	3.3V	
40	VCC 5.0V	PWR	5.0V	
41	MIC1	ı		Audio Pin 1
42	GND	PWR		
43	n.c.			
44	LINEIN_R	I		
45	LINEOUT_R	0		
46	GND	PWR		
47	GND	PWR		
48	LINEIN_L	I		
49	LINOUT_L	0		
50	GND	PWR		
51	RESETBTN	1	3.3V	
52	VCC 3.3V	PWR	3.3V	
53	n.c.	-	-	COM Pin1
54	n.v.	-	-	
55	RXD0	I	3.3V	
56	RTS0	0	3.3V	
57	TXD0	0	3.3V	
58	CTS0	I	3.3V	
59	n.c.	-	-	
60	n.c.	-	-	
61	GND	PWR		
62	VCC 5.0V	PWR	5.0V	
63	CANRX	ı	3.3V	
64	CANTX	0	3.3V	
65	BOOTSEL	ı	3.3V	
66	VCC 3.3V	PWR	3.3V	

Table 9: armStone Feature Connector

On default a 9 pin connector is mounted on pin 53..61 to use a COM port standard adapter cable. Italic signals does have a 4k7 pull-up on the module.

4.11.1 Audio

The connector does provide Stereo Line in, Stereo Line out and microphone.

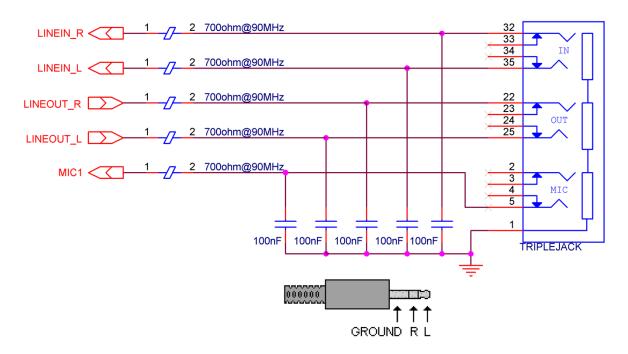


Figure 7: Audio connection

4.11.2 RS232 COM port

A 9 pin double row connector is mounted in pin 53..61. That allows attaching a standard 9pin to DSUB9 adapter cable for debug output of boot loader and kernel with TX and RX to a terminal.

An additional RX/TX COM port pair is on pin 36&38.

4.11.3 TTL COM port

There is an additional serial ports with 3.3V TTL level on pin 13&15.

4.11.4 I2C/SPI

The module supports two I2C interfaces at feature connector. Only one is compatible with armStone standard. Signals are 3.3V compliant and do have 4.7k pull-ups on module

There is also a HS SPI interface as alternative function available on these pins.

armStoneA9 Feature Connector I2C Interfaces						
Pin				Remarks		
12	-	GPIO	GPIO, SPI_CLK	4,7kΩ PullUp onboard		
14	-	GPIO	GPIO, SPI_CS	4,7kΩ PullUp onboard		
16	Soft I2C_SCL	I2C_SCL	GPIO, SPI_MOSI	4,7kΩ PullUp onboard		
17	Soft I2C_SDA	I2C_SDA	GPIO, SPI_MISO	4,7kΩ PullUp onboard		
18	I2C1_SCL	GPIO	GPIO, ROW0			
26	I2C1_SDA	GPIO	GPIO			

Table 10: I2C/ SPI Interfaces

4.11.5 ADC In

4 ADC inputs (ADC IN0..3)

Created by an on board mounted TI ADS1015.

This feature is just available on a custom version.

4.11.6 PWM out

3 programmable PWM outputs (PWMOUT0..2) with 3.3V level in 16.1kHz up to 33 MHz frequency range

4.11.7 Matrix keyboard

8x8 keyboard matrix (ROW0..7, COL0..1) with 3.3V level. The COL signals in pin 3..10 does have 4.7k pull-ups on board.

4.11.8 GPIOs

GPIOs are programmable as Input or Output with 3.3V TTL level. The default maximum driver current is 10mA (sink and source).

XGPIO0..9 do have 4.7k pull-up on module.

²⁾ These IO-Pins can be reconfigured as GPIO.

³⁾ Alternate pin configuration function in software. Please refer the software manual or ask our technical support. There is no compatibility to other armStone using this alternative function.

4.11.9 MISC signals, power

RESETBTN 3.3V TTL low active RESET input; use pushbutton to GND or open col-

lector driver to pull low. Don't drive with high level.

VCC3.3, VCC5 voltage outputs for external logic, max. 100mA per pin

for external chips and functions

Backlight On 3.3V TTL high active output to switch on LCD backlight. Same signal as

on 4.6.1 and 4.7

Bootsel only used for production. Don't use.

4.11.10 CAN Bus

The module does provide the CAN bus transmit and receive TTL signal without any termination in standard version (CANRX, CANTX). Both signals are working with 3.3V level.

Needs a interface chip to the CAN bus showing below. If not used, please left signals unconnected.

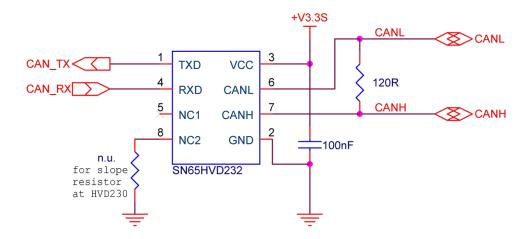


Figure 8: CAN transceiver circuit

4.12 Power connector

A 5 pin power connector is mounted on the module.

Connector type

- Phoenix contact MC 1,5/ 5-G-3,81 1803303
- Würth Elektronik order no. 691 322 310 005

For matching connectors please refer the connector manufacturer website.

Pin	Signal	I/O	Voltage	Remarks
1	n.c.	-	-	
2	RTC Battery	PWR		for RTC battery, don't connect if not used
3	VCC IN	PWR	5.0V	
4	GND IN	PWR		
5	VCC OUT	PWR	3.3V	Power output for external logic, max. current 50mA

Table 11: Power Connector

If an external 3.3V power supply is used for external logic, we recommend to use the "VCC Out 3.3V" as enable signal for this power supply to avoid backdrive leak current thru IO pins.

5 Electrical characteristic

5.1 Absolute maximum ratings

Description	Min	Max	Unit
Input Voltage range 3.3V IO pins	-0.3	OVDD*+0.3	V
Voltage on any IO with VIN off		0.3	V
USB VBUS	-0.3	5.6	V
Maximum power consumption VDD_VBAT at 25°C		10	μΑ
Maximum output current VLCD		300	mA
Thermal design power (summary all chips)		10.6	W
(with 1GHz Quad CPU)*		10.0	
Thermal design power (summary all chips)		7	W
(with 1GHz DualLite CPU)*		·	
Thermal design power (summary all chips)		6	W
(with 1GHz Solo CPU)*		_	_

Table 12: Absolute Maximum Ratings

5.2 DC Electrical Characteristics

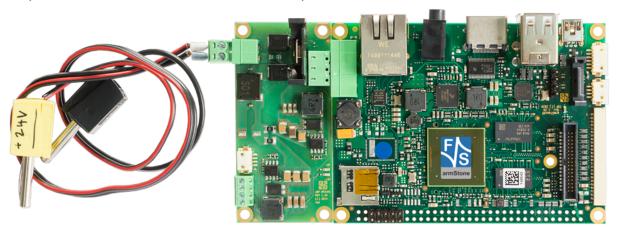
Parameter	Description	Condition	Min	Max	Unit
VIN	Module main power		4.7	5.5	V
VBAT	RTC power		0.9	5.5	V
USB_OTG*_VBUS	USB supply voltage		4.4	5.5	
OVDD	On module 3.3V DCDC		3.15	3.45	V
V _{ih}	High Level Input Voltage		0.7*OVDD	OVDD	V
V _{il}	Low Level Input Voltage		0	0.3*OVDD	V
V _{oh}	High Level Output Voltage	I _{oh} =0.1mA	OVDD-0,15		V
V _{ol}	Low Level Output Voltage	I _{ol} =0.1mA		0.15	V
I _o	Output current IOs	3.3V		5	mA

OVDD = power on pin 3.3V from on module DCDC

Table 13: DC Electrical Characteristics

^{*} Power consumption of connected devices like display, USB devices, SD card, miniPCle card has to be added for power calculation.

6 Thermal Specification


Description	Min	Тур	Max	Unit
Operating temperature i.MX6 ("C-Temp")	0		+70 ¹	°C
Operating temperature i.MX6 ("I-Temp") ²	-20		+85¹	°C
Junction temperature i.MX6 ("C-Temp")	-20		+105	°C
Junction temperature i.MX6 ("I-Temp") ²	-20		+105	°C
Junction to Package Top of i.MX6 (Psi-JT) ³		2		°C/W

- ¹ Depending on cooling solution. See also: *Power consumption and cooling*
- ² Optional
- ³ Temperature difference between package top and the junction temperature per JEDEC JESD51-2.

7 ADP-NT24V2

To power the armStoneA9 with 7,5-36V F&S provide ADP-NT24V2:

The extension board is designed to plug it into the power Connector of the armStone. For more information check the F&S website:

https://www.fs-net.de/de/produkte/zubehoer/power-adapter-2/

8 Review service

F&S provide a schematic review service for your baseboard implementation. Please send your schematic as searchable PDF to support@fs-net.de.

9 Second source rules

F&S qualifies their second sources for parts autonomously, as long as this does not touch the technical characteristics of the product. This is necessary to guarantee delivery times and product life. A setup of release samples with released second sources is not possible.

F&S does not use broker components without the consent of the customer.

10 Power consumption and cooling

Depend you product version you will have different temperature range and power consumption of the module.

The operating temperature can be measured on the mounting holes on top of the module and shouldn't exceed the maximum operating temperature of the board (85°C).

The maximum power consumption of the board could be **t.b.d.** Watt. This value is with 100% working of cores and full working graphic engines. Calculating with this scenario does need an expensive cooling.

Depend your application and your worst case scenario the maximum power consumption is much lower. This will save money on your cooling solution. We recommend to measure this with your application. We see values between max. **t.b.d.** and **t.b.d.** Watt on different custom applications.

Because the different environments for air temperature, airflow, thermal radiation, power consumption of the board on your application and the power consumption of other components like power supply and LCD inside the system you have to calculate a working cooling solution for the board.

Just cooling the CPU with 70-90% of the power consumption of the entire board is the best way to cool the board.

To calculate your cooling we recommend this helpful literature and the CPU datasheet

- AN4579 from NXP: Thermal management guidelines
- fischerelektronik.de/web fisch...eKataloge/Heatsinks/#/18/
- http://www.eetimes.com/document.asp?doc_id=1276748
- http://www.eetimes.com/document.asp?doc id=1276750

11 Storage conditions

Maximum storage on room temperature with non-condensing humidity: 6 months Maximum storage on controlled conditions 25 ±5 °C, max. 60% humidity: 12 months For longer storage we recommend vacuum dry packs.

12 ROHS and REACH statement

All F&S designs are created from lead-free components and are completely ROHS compliant.

The products we supply do not contain any substance on the latest candidate list published by the European Chemicals Agency according to Article 59(1,10) of Regulation (EC) 1907/2006 (REACH) in a concentration above 0.1 mass %.

Consequently, the obligations in No. 1 and 2 paragraphs in Annex are not relevant here. Please understand that F&S is not performing any chemical analysis on its products to testify REACH compliance and is therefore not able to fill out any detailed inquiry forms.

13 Packaging

All F&S ESD-sensitive products are shipped either in trays or bags.

The modules are shipped in trays. One tray can hold 20 boards. An empty tray is used as top cover.

14 Matrix Code Sticker

All F&S hardware is shipped with a matrix code sticker including the serial number. Enter your serial number here https://www.fs-net.de/en/support/serial-number-info-and-rma/ to get information on shipping date and type of board.

Figure 9: Matrix Code Sticker

15 Appendix

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. F&S Elektronik Systeme ("F&S") assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained in this documentation.

F&S reserves the right to make changes in its products or product specifications or product documentation with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

F&S makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does F&S assume any liability arising out of the documentation or use of any product and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

Products are not designed, intended, or authorized for use as components in systems intended for applications intended to support or sustain life, or for any other application in which the failure of the product from F&S could create a situation where personal injury or death may occur. Should the Buyer purchase or use a F&S product for any such unintended or unauthorized application, the Buyer shall indemnify and hold F&S and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that F&S was negligent regarding the design or manufacture of said product.

Specifications are subject to change without notice.

Warranty Terms

Hardware Warranties

F&S guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and F&S's sole liability shall be for F&S, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Software Warranties

Software is provided "AS IS". F&S makes no warranties, either express or implied, with regard to the software object code or software source code either or with respect to any third party materials or intellectual property obtained from third parties. F&S makes no warranty that the software is useable or fit for any particular purpose. This warranty replaces all other warranties written or unwritten. F&S expressly disclaims any such warranties. In no case shall F&S be liable for any consequential damages.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER EX-PRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDIC-TION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PUR-CHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL F&S BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS

16 Content

Table 2: Thermal Specification Table 3: USB OTG & Host Interface Connections Table 4: Single channel LVDS connector Table 5: JILI30 dual channel LVDS connector Table 6: Digital RGB display connector Table 7: Backlight control connector Table 8: I2C Touch Interface Table 9: armStone Feature Connector Table 10: I2C/ SPI Interfaces Table 11: Power Connector Table 12: Absolute Maximum Ratings Table 13: DC Electrical Characteristics Figure 1: Block Diagram Figure 2: Mechanical Dimension Figure 3: Connector Layout Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit Figure 9: Matrix Code Sticker	Table 1: Mechanical Dimensions	6
Table 4: Single channel LVDS connector	Table 2: Thermal Specification	8
Table 5: JILI30 dual channel LVDS connector Table 6: Digital RGB display connector Table 7: Backlight control connector. Table 8: I2C Touch Interface Table 9: armStone Feature Connector Table 10: I2C/ SPI Interfaces. Table 11: Power Connector Table 12: Absolute Maximum Ratings Table 13: DC Electrical Characteristics. Figure 1: Block Diagram Figure 2: Mechanical Dimension Figure 3: Connector Layout Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit	Table 3: USB OTG & Host Interface Connections	10
Table 6: Digital RGB display connector Table 7: Backlight control connector. Table 8: I2C Touch Interface	Table 4: Single channel LVDS connector	11
Table 7: Backlight control connector Table 8: I2C Touch Interface Table 9: armStone Feature Connector Table 10: I2C/ SPI Interfaces	Table 5: JILI30 dual channel LVDS connector	13
Table 8: I2C Touch Interface Table 9: armStone Feature Connector Table 10: I2C/ SPI Interfaces	Table 6: Digital RGB display connector	15
Table 9: armStone Feature Connector Table 10: I2C/ SPI Interfaces	Table 7: Backlight control connector	15
Table 10: I2C/ SPI Interfaces	Table 8: I2C Touch Interface	17
Table 11: Power Connector Table 12: Absolute Maximum Ratings Table 13: DC Electrical Characteristics Figure 1: Block Diagram Figure 2: Mechanical Dimension Figure 3: Connector Layout Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit	Table 9: armStone Feature Connector	19
Table 12: Absolute Maximum Ratings		
Table 13: DC Electrical Characteristics Figure 1: Block Diagram Figure 2: Mechanical Dimension Figure 3: Connector Layout Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit	Table 11: Power Connector	23
Figure 1: Block Diagram	Table 12: Absolute Maximum Ratings	24
Figure 2: Mechanical Dimension Figure 3: Connector Layout Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit	Table 13: DC Electrical Characteristics	24
Figure 2: Mechanical Dimension Figure 3: Connector Layout Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit	Figure 1: Block Diagram	5
Figure 4: backlight connection with single cable Figure 5: backlight connection with 2 cable Figure 6: backlight connection with single cable Figure 7: Audio connection Figure 8: CAN transceiver circuit	Figure 2: Mechanical Dimension	6
Figure 5: backlight connection with 2 cable	Figure 3: Connector Layout	9
Figure 6: backlight connection with single cable	Figure 4: backlight connection with single cable	15
Figure 7: Audio connection	Figure 5: backlight connection with 2 cable	16
Figure 8: CAN transceiver circuit	Figure 6: backlight connection with single cable	16
	Figure 7: Audio connection	20
Figure 9: Matrix Code Sticker	Figure 8: CAN transceiver circuit	22
	Figure 9: Matrix Code Sticker	28

