
Visual Studio Code 
C/C++ Application 

Development
Version 0.1

(2024-05-29)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99



Software Documentation Visual Studio Code C/C++ Application Development | ii



Software Documentation Visual Studio Code C/C++ Application Development | iii

About This Document
This document describes how to set up the Tester Board and the Device under Test to 
perform tests with the Linux Release Tester software.

Remark
The version number on the title page of this document is the version of the document. It is 
not related to the version number of any software release!

How To Print This Document
This document is designed to be printed double-sided (front and back) on A4 paper. If you 
want to read it with a PDF reader program, you should use a two-page layout where the title 
page is an extra single page. The settings are correct if the page numbers are at the outside 
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then 
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions

We use different fonts and highlighting to emphasize the context of special terms:
File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage



Software Documentation Visual Studio Code C/C++ Application Development | iv

History
Date V Platform A,M,R Chapter Description Au
2024-05-27 0.1 ALL A ALL Initial version BS

V Version
A,M,R Added, Modified, Removed
Au Author



Software Documentation Visual Studio Code C/C++ Application Development | v

Table of Contents
1 Tested Software and Hardware Versions 1
2 Setup of the F&S Board 2
3 Create the SDK 3
4 Setup of the Linux Build Host 4

Installing the SDK 4
Installing gdb 4
Installing Visual Studio Code 5
Get the example Code 5
Adapt Settings 5
Cross Compilation and Debugging 6



Software Documentation Visual Studio Code C/C++ Application Development | 1

The Software used in this document has been tested with the following versions.

Software Version
Development Machine F_S_Development_Machine-Fedora-36_V1.5

Visual Studio Code Version: 1.89.1
Commit: dc96b837cf6bb4af9cd736aa3af08cf8279f7685
Date: 2024-05-07T05:16:23.416Z
Electron: 28.2.8
ElectronBuildId: 27744544
Chromium: 120.0.6099.291
Node.js: 18.18.2
V8: 12.0.267.19-electron.0
OS: Linux x64 6.2.15-100.fc36.x86_64

Tested F&S Releases fsimx93-Y2024.03-pre

Tested Boards PicoCoreMX93, Rev 1.00

1 Tested Software and Hardware Versions



Software Documentation Visual Studio Code C/C++ Application Development | 2

For remote debugging on your F&S Board, gdbserver is needed. It should be installed in 
future F&S Yocto releases. If not already installed, add it to your Yocto conf/local.conf and 
create a new image.

EXTRA_IMAGE_FEATURES:append = " tools-debug"

2 Setup of the F&S Board



Software Documentation Visual Studio Code C/C++ Application Development | 3

Yocto can create the SDK needed for your specific board and software environment. The 
SDK is needed on your host machine for cross compilation.

bitbake [IMAGE NAME] –c populate_sdk

This command produces an SDK installer that will be in tmp/deploy/sdk in the Build Directory 
after bitbake completes. Keep in mind that this command will not create a new image, only 
the SDK.

For further information consult the Yocto documentation:
https://docs.yoctoproject.org/sdk-manual/appendix-obtain.html#building-an-sdk-installer

3 Create the SDK

https://docs.yoctoproject.org/sdk-manual/appendix-obtain.html%23building-an-sdk-installer


Software Documentation Visual Studio Code C/C++ Application Development | 4

Installing the SDK
First you need to install the SDK on your Build Host.
Run the *.sh installation script that was created during 3 Create the SDK. The name of the 
*.sh file may be different, depending on your board and software. 

./fus-imx-wayland-glibc-x86_64-fus-image-std-armv8a-fsimx93-
toolchain-6.1-mickledore.sh

When running the script you are asked for the target directory of the SDK. For this example 
the default is kept, which in this case is /opt/fus-imx-wayland/6.1-mickledore. 
Remember your directory, as that is needed later on for setting up the VS Code project.
For more information, visit https://docs.yoctoproject.org/sdk-manual/using.html.

Installing gdb
Check your Linux Build Host if gdb is installed.

which -a gdb

If gdb is already installed, you will get a response like this:

In this case, you can skip directly to Installing Visual Studio Code.

Else, if gdb is not installed, the response looks like this:

/usr/bin/which: no gdb in 
(/home/developer/.local/bin:/home/developer/bin:/usr/lib64/ccache:
/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/usr/local/
arm/fs-toolchain-11.2-armv8ahf/bin)

To install gdb on Fedora, first update the yum database with following command:

sudo dnf makecache –refresh

The output should look similar to this:

After updating the database you can install gdb using dnf with this command:

sudo dnf -y install gdb

4 Setup of the Linux Build Host

https://docs.yoctoproject.org/sdk-manual/using.html


Software Documentation Visual Studio Code C/C++ Application Development | 5

If you use another Linux distribution as Fedora, change dnf to your distributions package 
manager (for example apt on Ubuntu / Debian).

Installing Visual Studio Code
On Fedora, the latest stable 64-bit VS Code is available in a yum repository. Add the 
repository:

sudo rpm --import 
https://packages.microsoft.com/keys/microsoft.asc

echo -e "[code]\nname=Visual Studio 
Code\nbaseurl=https://packages.microsoft.com/yumrepos/vscode\nenab
led=1\ngpgcheck=1\ngpgkey=https://packages.microsoft.com/keys/micr
osoft.asc" | sudo tee /etc/yum.repos.d/vscode.repo > /dev/null

Then update the package cache:

dnf check-update

And last, install VS Code:

sudo dnf install code

For more information and installation on other distributions as Fedora, see the VS Code 
documentation at https://code.visualstudio.com/docs/setup/linux.

After the installation of VS Code finished you should install the needed extension for C and 
C++ debugging:

code --install-extension ms-vscode.cpptools

Get the example Code
Clone the example fs_vscode_c-cpp_app_development from Github.

git clone https://github.com/FSEmbedded/fs_vscode_c-
cpp_app_development

Navigate to the example directory and open it in VS Code:

cd fs_vscode_c-cpp_app_development

code .

Adapt Settings
Inside fs_vscode_c-cpp_app_development, have a look at .vscode. There are three 
json-files which contain everything needed for cross compiling and remote debugging.
Adapt the settings in settings.json to your environment. The most important Settings 
are the BOARD_IP and SDK_SETUP_SCRIPT. The other values can probably stay the 
same.
For SDK_SETUP_SCRIPT, follow the path defined as target directory when installing the 
SDK. Inside this directory is a file named environment-setup-*. Add the whole path to this file 
as value for SDK_SETUP_SCRIPT

https://code.visualstudio.com/docs/setup/linux


Software Documentation Visual Studio Code C/C++ Application Development | 6

Cross Compilation and Debugging
Now you are ready for remote debugging. You can add a breakpoint in hello_debug.c to 
see the debugger working.

Go to the Run and Debug tab and select Debug on FuS Board.

Click Start Debugging or use the Shortcut F5 to start the Debug process. The program will 
stop at the execution of main and at your set breakpoints.



Software Documentation Visual Studio Code C/C++ Application Development | 7

If you start debugging, VS Code will first cross compile using the SDK, then deploy the binary 
and finally start gdbserver on your board, all automated using the tasks in tasks.json.

You can see the output of hello_debug in the terminal inside VS Code.

If you only want to execute one of the tasks included in the Debug on FuS Board launch 
configuration, you can start each task in tasks.json by opening the Command Palette in 
VS Code (Ctrl+Shift+P), type “Run Task” and select your choice.
fus_cross-compile will only compile using the SDK.
fus_deploy-to-board will compile and then deploy to your board.
fus_launch-on-board will compile, deploy and launch the application on your board.
fus_debug-on-board is the task executed by Debug on FuS Board.
build is a shortcut to fus_cross-compile and can be called directly: Ctrl+Shift+B


