
.NET on F&S
Boards

Version 0.9
(2024-06-12)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

Software Documentation .NET on F&S Boards | ii

Software Documentation .NET on F&S Boards | iii

About This Document
This document describes how to run .NET applications on F&S Boards.

Remark
The version number on the title page of this document is the version of the document. It is
not related to the version number of any software release! The latest version of this
document can always be found at http://www.fs-net.de.

How To Print This Document
This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions
We use different fonts and highlighting to emphasize the context of special terms:
File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

http://www.fs-net.de/

Software Documentation .NET on F&S Boards | iv

History
Date V Platform A,M,R Chapter Description Au
2021-07-
19

0.1 ALL A ALL Initial version PG

2021-07-
23

0.2 ALL M ALL Adapted formatting of document to F&S CI HF

2021-07-
26

0.3 ALL A 6.3 Add VS2019 remote debugging chapter PG

2021-07-
27

0.4 ALL M ALL Correct some typos, Remove false
quotation marks in tasks example.

PG

2023-04-
13

0.5 ALL A,M 3,5,6 Added guide to create basic Hello World application,
added command needed when installing debugger on
board.

TG

2023-04-
21

0.6 ALL M 6.2 Fix pathes to match the FS-vscode-remote-debug-config
Fix sshd_conf to sshd_config
Add info about debugging not working on .NET7 arm

PG

2023-12-
12

0.7 ALL A,M 4.3,5.3,6.3.6.5 Add dotnet packages to Yocto
Adapting code to run Avalonia on Linux and Windows
Remote debugging in Visual Studio 2022

BS

2024-05-
14

0.8 ALL A,M 1,3,6.5.2,6.5.3,7,8 Demo App “FusDotnetDemo”
Enabling RDP
Copy files to board with PowerShell-Script

BS

2024-05-
29

0.9 ALL M 5.1, 6.3 Changed “Hello World” to .NET8.0
VSCode: new example config in git-repository, changed
description and pictures to use new config-files

BS

V Version
A,M,R Added, Modified, Removed
Au Author

Software Documentation .NET on F&S Boards | v

Table of Contents
1 Introduction 1
2 System Requirements 2
3 Tested Software Versions 3
4 Compiling the .Net Images 4

4.1 Prequisites...4
4.2 Compiling the .NET images with Buildroot ..4
4.3 Compiling the .NET images with Yocto ...6

5 Executing .NET applications on F&S boards 7
5.1 Running an Hello World Application ..7
5.2 Running an Avalonia Application...8

6 Remote debugging .NET apps on F&S Boards 10
6.1 Installing VSDebugger to the board...10
6.2 Enabling root access via SSH ...10
6.3 Visual Studio Code ..12
6.3.1 Configuring VSCode..12
6.3.2 Start debugging in VSCode ...13
6.4 Visual Studio 2019...14
6.4.1 Configure rootfs ...14
6.4.2 Configure board...14
6.4.3 Configure VS 2019 ..15
6.5 Visual Studio 2022...15
6.5.1 Configure Board ..15
6.5.2 Attach To Process ...16

7 Advanced Features for Remote Debugging 17
7.1 Enabling Remote Desktop on Linux ..17
7.1.1 Generate keys ...17
7.1.2 Start Display Server...17
7.1.3 Start RDP Server...17
7.1.4 Start App using RDP ...18
7.2 Automate the copy process to the board...18

8 Appendix 19
8.1 copy_debug_to_board.ps1 ..19
8.2 Important Notice ..20

Software Documentation .Net 5 on F&S Boards | 1

1 Introduction

This document describes how to run .NET application on F&S-Linux boards.

To access Linux hardware like I²C or SPI in .NET you need additional libraries which are
released and maintained by Microsoft at

https://github.com/dotnet/iot

We released the demo application “FusDotnetDemo” on Github, an app to showcase some
of the possibilities of .NET on Linux with F&S boards:
https://github.com/FSEmbedded/FusDotnetDemo
FusDotnetDemo is built using Avalonia UI and the main scope is to give some examples on
how to access hardware interfaces in Linux with .NET by using the aforementioned libraries.

This document assumes basic knowledge of using Linux on F&S boards. For a detailed
introduction please see the Linux on F&S Boards.pdf from the document section of your F&S
board at

https://www.fs-net.de/

https://github.com/dotnet/iot
https://github.com/FSEmbedded/FusDotnetDemo
https://www.fs-net.de/

Software Documentation .Net 5 on F&S Boards | 2

2 System Requirements

The .NET images need a lot of disk space, so make sure your flash memory is big enough:
Buildroot

Image type Image size
Ubifs Image (Nand Flash) 210 MB

Ext4 Image (eMMC) 480 MB

Yocto
Image type Image size

Ubifs Image (Nand Flash)

Ext4 Image (eMMC)

Software Documentation .Net 5 on F&S Boards | 3

3 Tested Software Versions
The Software used in this document has been tested with the following versions.

Software Version
Development Machine F_S_Development_Machine-

Fedora_30_V2.0

F_S_Development_Machine-
Fedora_35_V1.0

Buildroot
 fsimx6
 fsimx8

fsimx6-B2021.10.1
fsimx8-B2021.06.1

Yocto -

.NET SDK 6.0.201
.NET Runtime 6.0.3

SDK 7.0.203
.NET Runtime 7.0.5

SDK 8.0.205
.NET Runtime 8.0.5

VSCode 1.65.2
1.77.1
1.89.1

VSDebugger 17.0.10413.12
Visual Studio 2019 16.10.4
VSRemoteDebugger (VS2019) 1.3
Visual Studio 2022 17.9.2

Software Documentation .Net 5 on F&S Boards | 4

4 Compiling the .Net Images
F&S supports the build environments Buildroot and Yocto to build the system software.
This chapter describes how to build a root file system with preinstalled .NET binaries, using
Buildroot or Yocto.
For a detailed description how to setup and use the build environments, please see the
document Linux on F&S Boards chapter Compiling the System Software.

4.1 Prequisites
Note
For now, we will only describe how to modify an existing build to add .NET support. If there is
enough interest in this matter, we will add recipes to build .NET images fully automatic.

You can download the .NET binaries from the official Microsoft website.
Make sure to download the right OS (Linux) and architecture (Arm32 for i.MX6 and Arm64 for
i.MX8 based boards).
If you want to compile the code directly on the board, you will have to download the SDK.
This however needs a lot of disc space, so make sure your board has enough flash memory
available.
For most cases the .NET Runtime should be sufficient.
Copy the Binaries to your development machine.

4.2 Compiling the .NET images with Buildroot
1. Get the latest F&S-Buildroot release and execute the setup-buildroot script to

install Buildroot to your development machine. Follow the instructions.
2. Build the respective defconfig of your machine. For example run:

make fs<YOUR_MACHINE>_wayland_defconfig

in your Buildroot main directory.
3. Open the configuration menu in your buildroot directory

make menuconfig

4. Activate the ICU package at
Target packages -> Libraries -> Text and terminal handling ->
icu

5. Build buildroot
make –j4

6. Create the directory
output/target/usr/share/dotnet-runtime/
and copy the previously downloaded .NET binaries to it (the complete content of the
archive).

7. Create the file
output/target/etc/profile.d/dotnet.sh
and add the following content:

#!/bin/sh

export PATH=$PATH:/usr/share/dotnet-runtime/

Software Documentation .Net 5 on F&S Boards | 5

export DOTNET_ROOT=/usr/share/dotnet-runtime/

This will export the path to the .NET installation each time you log in.

8. Build buildroot again:
make –j4

9. The build output can be found at
output/images/

Software Documentation .Net 5 on F&S Boards | 6

4.3 Compiling the .NET images with Yocto
You have to add dotnet-core to your Yocto sources. You can find these on GitHub, follow this
link for more information:
https://github.com/RDunkley/meta-dotnet-core

In your development machine, change directory to the sources for your build:

cd /path/to/your/release/build/yocto-fus/sources

Get dotnet from GitHub:

git clone https://github.com/RDunkley/meta-dotnet-core

Now you have to add the desired packages to your local.conf:

vi /path/to/your/release/build/yocto-fus/build-MACHINE-
DISTRO/conf/local.conf

Add following lines:
PREFERRED_VERSION_dotnet-core = "7.0.11"

CORE_IMAGE_EXTRA_INSTALL += "dotnet-core vsdbg "

You can change the dotnet-version to your preferred one.

In bblayers.conf you have to set the directory for your dotnet-recipes:

vi /path/to/your/release/build/yocto-fus/build-MACHINE-
DISTRO/conf/bblayers.conf

Add this line at the end of the file:
BBLAYERS += " ${BSPDIR}/sources/meta-dotnet-core "

Now, change directory to yocto-fus:

cd /path/to/your/release/build/yocto-fus/

Setup your build environment:

. setup-environment build-MACHINE-DISTRO

This command will create your image, it will only add the dotnet-core and vsdbg to your
existing build:

bitbake fus-image-std

https://github.com/RDunkley/meta-dotnet-core
https://github.com/RDunkley/meta-dotnet-core/tree/master

Software Documentation .Net 5 on F&S Boards | 7

5 Executing .NET applications on F&S
boards

This chapter describes how to execute .NET applications on F&S boards.

5.1 Running an Hello World Application
1. Install the .NET images to your board. You will need to install kernel, device tree and

root filesystem. The different ways of how to install the images are described in the
document Linux on F&S Boards chapters Image Download and Image Storage.

2. To Create a Basic ‘Hello World’ Application you can use this command, which will
create an Application named MyApp based on .Net 8.
dotnet new console -o MyApp -f net8.0

3. Publish your application as linux-arm for i.MX6/7 boards and linux-arm64 for i.MX8
boards. Use the –no-self-contained flag to exclude the runtime binaries from your build

dotnet publish -r linux-arm -o bin\linux-arm\publish --no-
self-contained

4. Boot Linux and transfer your .NET application files to the board. You can transfer them
via network using the tftp command or use an USB stick. See Linux on F&S Boards
chapter Using the Standard System and Devices.

5. Execute the .NET applications DLL using

dotnet /path/to/your/application.dll

Software Documentation .Net 5 on F&S Boards | 8

5.2 Running an Avalonia Application
You can develop your application on your Windows Computer. To use Avalonia UI, you first
have to install it to your development PC:

dotnet new install Avalonia.Templates

Create a new project with Avalonia UI:

dotnet new avalonia.app -o MyApp

If you use Visual Studio, you can skip these two steps and instead install Avalonia as a
NuGet-package. Afterwards you can create a new project using Avalonia as template.

To run the new App on Linux, some adaptions have to be made to Program.cs :

using Avalonia.Media;

public static AppBuilder BuildAvaloniaApp()
…
.With(new FontManagerOptions() { DefaultFamilyName = "Liberation Sans" });

With Avalonia, it is possible to develop Apps that run on multiple platforms. If you want your
software to run on Windows and Linux, you can automatically set the right font for your
system:

public static AppBuilder BuildAvaloniaApp()
 {
 FontManagerOptions options = new();

 if (OperatingSystem.IsLinux())
 {
 options.DefaultFamilyName = "Liberation Sans";
 }
 // No need to set default for Windows
 return AppBuilder.Configure<App>()
 .UsePlatformDetect()
 .LogToTrace()
 .With(options)
 .UseReactiveUI();
 }
Choose a font that is available on Linux. If you need ReactiveUI for your program to work,
add it to your AppBuilder.

To run your software on Linux, follow these steps:
1. Publish your application as linux-arm for i.MX6/7 boards and linux-arm64 for i.MX8

boards. Use the –no-self-contained flag to exclude the runtime binaries from your build

dotnet publish -r linux-arm -o bin\linux-arm\publish --no-
self-contained

Software Documentation .Net 5 on F&S Boards | 9

2. Boot Linux and transfer your .NET application files to the board. You can transfer them
via network using the tftp command or use an USB stick. See Linux on F&S Boards
chapter Using the Standard System and Devices.

3. Execute the .NET applications DLL using

dotnet /path/to/your/application.dll

Software Documentation .Net 5 on F&S Boards | 10

6 Remote debugging .NET apps on F&S
Boards

You can use Visual Studio Code to program and compile your .NET applications as usual,
but if you want to debug your application while running on the F&S board, some additional
preparations are needed.

Note
As of this writing, remotely debugging .NET 7 apps in linux-arm environments is unreliable
and may cause the process to exit prematurely. This issue is under investigation. .NET 6
apps that target linux-arm and .NET 7 apps that target linux-arm64 are unaffected.

6.1 Installing VSDebugger to the board
Download the VSDebugger
For i.MX6/7 from
https://vsdebugger.azureedge.net/vsdbg-17-0-10413-12/vsdbg-linux-arm.tar.gz
For i.MX8 from
https://vsdebugger.azureedge.net/vsdbg-17-0-10413-12/vsdbg-linux-arm64.tar.gz

Note
Remote Debugging was tested with version 17-0-10413-12. There might be a newer version
available. You can test it by editing the download string.

The vsdebugger for arm needs about 104 MB of disk space.
If your board has enough flash memory you can install the VSDebugger like the dotnet
Runtime binaries:
Buildroot

1. Create the directory output/target/usr/share/dotnet-runtime/vsdbg-
linux and extract the downloaded files to it. (Make sure there is no additional sub
directory)

2. Rebuild buildroot and copy the new rootfs to the board.´
3. Once the Debugger is installed on the Board you will need to give the ‘vsdbg’ file (by

default located in /usr/share/dotne-runtimet/vsdbg-linux/) execute Permissions. This is
done with the following command:

chmod +x vsdbg

You can also copy the files to an SD card or USB stick and mount it at the board. You will
have to adapt some paths later on then.

6.2 Enabling root access via SSH
VSCode needs root access via SSH for remote debugging.
To allow root to login via SSH with no password set, some preparations are needed.

https://vsdebugger.azureedge.net/vsdbg-17-0-10413-12/vsdbg-linux-arm.tar.gz
https://vsdebugger.azureedge.net/vsdbg-17-0-10413-12/vsdbg-linux-arm64.tar.gz

Software Documentation .Net 5 on F&S Boards | 11

Please note that this should only be done for development purposes!
Buildroot

1. Mount the rootfile system read-writeable

mount -o remount,rw /

2. Edit the file /etc/ssh/sshd_conf using the vi editor

vi /etc/ssh/sshd_config

3. Edit the following lines (also remove the hashes):

(press ‘i’ to enter edit mode)

#PermitRootLogin prohibit-password -> PermitRootLogin yes

#PermitEmptyPasswords no -> PermitEmptyPasswords yes

(press ‘Esc’ to exit edit mode)

(type ‘:wq’ to save and quit)

4. Restart the ssh daemon

/etc/init.d/S50sshd restart

5. Set an IP address on the board. You can either use DHCP running the command

udhcpc

or set it per hand with the command

ifconfig eth0 up <YOUR.BOARD.IP.ADRESS>

You should now be able to log into root per SSH without entering a password.

Software Documentation .Net 5 on F&S Boards | 12

6.3 Visual Studio Code
6.3.1 Configuring VSCode
Install the C# Dev Kit Extension to VSCode to enable debugging of C# code:

code --install-extension ms-dotnettools.csharp

In order to launch the VSDebugger on the board, you will have to create or edit the
launch.json file. If it does not already exist you will be asked to create it when clicking on
the Run and Debug tab at the side bar.

Figure 1 Creating a launch.json file

We have a repository on Github which already has a working configuration (including
launch.json):

https://github.com/FSEmbedded/fs_vscode_dotnet_app_development

This repository also contains a small example application hello_debug, so you can directly
start with remote debugging.

If you already have your own project, copy / replace the files launch.json, tasks.json
and settings.jsons to the .vscode/ directory of your project.

Edit the following red marked lines in settings.jsons if necessary:

• Set your board IP address here. Use ifconfig to show your boards IP address.

 "BOARD_IP":"10.0.0.167",

• Change this path if you installed the VSDebugger at a different location

 "DEBUGGER_PATH":".vs-debugger/vs2022/vsdbg",

https://github.com/FSEmbedded/fs_vscode_dotnet_app_development

Software Documentation .Net 5 on F&S Boards | 13

• Change this path if you want to place your application to the flash instead of ram only
(e.g. to /opt)

 "BOARD_PATH":"/tmp",

• Change this to arm or arm64, depending on your board architecture

 "BOARD_ARCH":"arm64",

If you have an application with graphical user interface, add this “env”-configuration to
launch.json to define which display should be used:

 "env": {
 "DISPLAY": ":0",
 "XDG_RUNTIME_DIR": "/run/user/0"
 },

6.3.2 Start debugging in VSCode
Go to the Run and Debug tab and select Debug on FuS Board.

Figure 2 Start Debugging

Click Start Debugging or use the Shortcut F5 to start the Debug process. Your .NET
application should be built, deployed to the board and start running. The program will stop at
the execution of main and at your set breakpoints.

Software Documentation .Net 5 on F&S Boards | 14

You can see the output of hello_debug in the Debug Console inside VS Code.

If you only want to execute one of the tasks included in the Debug on FuS Board launch
configuration, you can start each task in tasks.json by opening the Command Palette in
VS Code (Ctrl+Shift+P), type “Run Task” and select your choice.
fus_build-debug-for-linux will build for linux using the defined board architecture.
fus_deploy-to-board will compile and then deploy to your board.
fus_launch-on-board will compile, deploy and launch the application on your board.
build is a shortcut to fus_build-debug-for-linux and can be called directly: Ctrl+Shift+B

6.4 Visual Studio 2019
There are no official solutions for remote debugging in Visual Studio 2019 yet.
You could either use Visual Studio Code to debug your application, or try community projects
like
https://github.com/radutomy/VSRemoteDebugger

The VSRemoteDebugger needs some additional preparations to work with F&S boards.

6.4.1 Configure rootfs
Buildroot

1. Open the configuration menu in your buildroot directory
make menuconfig

2. Activate the sudo package at
Target packages -> Shell and utilities -> sudo

3. Make buildroot and install the new rootfs to the board.

6.4.2 Configure board
1. Make sure you have executed the steps 6.1 Installing VSDebugger to the board and

6.2 Enabling root access via SSH
2. Open a Powershell und run the following commands

https://github.com/radutomy/VSRemoteDebugger

Software Documentation .Net 5 on F&S Boards | 15

ssh-keygen.exe -m pem

cat ~/.ssh/id_rsa.pub | ssh root@X.X.X.X "mkdir -p ~/.ssh &&
cat >> ~/.ssh/authorized_keys"

This will create a SSH private and public key and install the public key to your
development board. Replace X.X.X.X with your boards IP address.

6.4.3 Configure VS 2019

1. Install VSRemoteDebugger at Extentions > Manage extentions
2. Open Tools > Options > VSRemoteDebugger
3. At Local Machine Settings set Publish to True
4. At Remote Machine Settings use the following settings

.NetPath /usr/share/dotnet/dotnet

Group Name root

IP Address Your.board.IP.address

Project folder /tmp/dotnet

Username root

Visual Studio Debugger Path /usr/share/dotnet/vsdbg-linux-arm/vsdbg

• Change Project folder to e.g. /opt if you don’t want to debug from RAM. Make
sure your system is mounted read-writeable.

• Change Visual Studio Debugger Path if you did not install the debugger to the
rootfs.

5. Set a breakpoint and run Tools > Start Remote Debugging. You application should
get build, transferred to the board and started for debugging.

6.5 Visual Studio 2022
There are two options for remote debugging with Visual Studio 2022. The method described
in 6.5.2 Attach to Process is the “official” way described by Microsoft:
https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-
with-ssh?view=vs-2022
With the extension VSRemoteDebugger the process is simplified, but we cannot guarantee
that the description in 6.5.3 VSRemoteDebugger will work with future versions of Visual
Studio or VSRemoteDebugger.
For both methods, SSH on your Linux board must be enabled, see 6.5.1 Configure Board.

6.5.1 Configure Board
Follow the steps described in 6.4.2 Configure board to enable SSH connection

https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-with-ssh?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-with-ssh?view=vs-2022

Software Documentation .Net 5 on F&S Boards | 16

6.5.2 Attach To Process

For a more detailed description follow this link:
https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-
with-ssh?view=vs-2022

1. Deploy your application for your destination architecture
2. Transfer your build files to the board. You can for example simply use an USB-stick

or a tool like WinSCP to establish an SFTP connection to your board. Copy the files
to your board.

3. There is also the possibility to use a PowerShell script, which automates the process,
see 7.2 Automate the copy process to the board

4. After transferring the files to your board, execute the .NET applications DLL using
Powershell on Windows

ssh user@BoardIP

dotnet /path/to/your/application.dll

5. When the application is running on your board you can attach to it with the debugger
in Visual Studio: Debug > Attach to Process

6. Select Connection Type > SSH
7. Change the Connection Target to the IP address of your board. You will be prompted

for your credentials on first connection. Select your private key file, created in 6.5.1
Configure Board.
8. In the process list you should find your running application (Process: dotnet)

9. Choose Attach
10. You can now start debugging.

https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-with-ssh?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/debugger/remote-debugging-dotnet-core-linux-with-ssh?view=vs-2022

Software Documentation .Net 5 on F&S Boards | 17

7 Advanced Features for Remote Debugging

7.1 Enabling Remote Desktop on Linux
With RDP (Remote Desktop Protocol) you can control your .NET-app from the development
machine while it is running on a Linux-Board, without the need of a physical display
connected to the board.

7.1.1 Generate keys
First you need to generate keys in Linux. This is only needed to be done once for each
board. The first step is to create the directory to store the keys:

mkdir /etc/freerdp && mkdir /etc/freerdp/keys/

cd /etc/freerdp/keys/

These commands will create the keys:

openssl genrsa -out tls.key 2048

openssl req -new -key tls.key -out tls.csr

openssl x509 -req -days 365 -signkey tls.key -in tls.csr -out
tls.crt

7.1.2 Start Display Server
The display server won't start automatically if no physical display is connected to your board.
Without the display server running, RDP is not working. This can be changed by editing
weston.ini:

vi /etc/xdg/weston/weston.ini

Find the entry for [screen-share]:

The line ‘#start-on-startup=true’ is commented out. Remove the ‘#’ and save weston.ini to
enable the start of the display server on the next boot.

7.1.3 Start RDP Server
To start RDP on your Linux board, enter this command:

/usr/bin/weston --backend=rdp-backend.so --rdp-tls-
cert=/etc/freerdp/keys/tls.crt --rdp-tls-
key=/etc/freerdp/keys/tls.key

Now everything is prepared to connect from your Windows host. Start ‘Remotedesktop’ on
Windows and enter the IP-address of your Linux board.

Software Documentation .Net 5 on F&S Boards | 18

Click connect, Windows may warn because of unverified certificates. If you connect anyway
you should see the desktop of your Linux board.

7.1.4 Start App using RDP
If you have no physical display connected to your board, using only RDP, you can start the
app as usual, see 5. Executing .NET applications on F&S boards.

If you have a physical display connected and RDP enabled, you must define on which
display the app should run, default is the physical display.
To start the app on RDP, use this command:

WAYLAND_DISPLAY=wayland-1 DISPLAY=:1 dotnet
path/to/your/application.dll

7.2 Automate the copy process to the board
Instead of manually copying all the generated binaries and libraries needed for execution of
your application to the Linux board, you can simply automate this process with a PowerShell
script.
You can find an example script at 8.1 copy_debug_to_board.ps1

This script will copy the content of .\bin\Debug\net8.0 to a temporary directory, pack
this temporary directory as a .tar archive, copy the archive file to your board and unpack it
there. It will only copy the relevant runtimes to your board to reduce storage space and make
the copy process faster.
Adapt $ipAddress and $projectName to your conditions. $runtimesToCopy can be
adapted as well. For Linux you will always need the “unix”-runtime, but depending on your
board you will only need either “linux-arm” or “linux-arm64”.
Save the PowerShell script to the root directory of your project and let it run after each build
to always have the newest binaries on your board.
If you use Visual Studio you can also automate the execution of this script by adding an entry
to [YOUR PROJECT NAME].csproj:

<Target Name="PostBuild" AfterTargets="PostBuildEvent">

 <Exec Command="powershell.exe .\copy_debug_to_board.ps1" />

</Target>

If enabled, the files in your Debug directory will automatically be copied to the board
whenever you create a new build!

Software Documentation .Net 5 on F&S Boards | 19

8 Appendix

8.1 copy_debug_to_board.ps1
Define variables, adapt as needed

$ipAddress = "[YOUR BOARD IP ADDRESS]"

$projectName = "[YOUR PROJECT NAME]"

Directories to copy from the local runtimes directory

$runtimesToCopy = @("unix", "linux-arm", "linux-arm64")

Local folder where the binaries are stored

$sourceDir = ".\bin\Debug\net8.0"

Remote board

$remoteHost = "root@${ipAddress}"

$remoteDir = "/home/root"

Temporary files and folders for the tar process

$tempDir = ".\bin\Debug\tempDir"

$tempSource = "${tempDir}\${projectName}"

$tarFileName = "${projectName}_Debug.tar"

$tarFilePath = ".\bin\Debug\${tarFileName}"

Function to copy files and folders

function Copy-Files {

 param (

 [string]$source,

 [string]$destination,

 [string]$exclude

)

 robocopy $source $destination /e /xd $exclude | Out-Null

}

Copy files and folders to temporary directory, exclude runtimes
directory

Copy-Files -source $sourceDir -destination $tempSource -exclude
"runtimes"

Copy required runtimes to the temporary directory

foreach ($runtime in $runtimesToCopy) {

Software Documentation .Net 5 on F&S Boards | 20

 $runtimePath = Join-Path -Path $sourceDir -ChildPath
"runtimes\$runtime"

 if (Test-Path $runtimePath) {

 Copy-Files -source $runtimePath -destination
"${tempSource}\runtimes\$runtime"

 }

}

Create .tar archive with all contents from tempDir

tar -cf $tarFilePath -C $tempDir .

Copy tar archive to remote board

scp $tarFilePath "${remoteHost}:${remoteDir}"

Extract tar archive on remote board and remove it

ssh $remoteHost "tar -xf ${tarFileName} && rm ${tarFileName}"

Clean up temporary directory

Remove-Item -Path $tempDir -Recurse

Delete local .tar file

Remove-Item -Path $tarFilePath

8.2 Important Notice
The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme GmbH (“F&S”) assumes no
responsibility, however, for possible errors or omissions, or for any consequences resulting
from the use of the information contained in this documentation.
F&S reserves the right to make changes in its products or product specifications or product
documentation with the intent to improve function or design at any time and without notice
and is not required to update this documentation to reflect such changes.
F&S makes no warranty or guarantee regarding the suitability of its products for any
particular purpose, nor does F&S assume any liability arising out of the documentation or use
of any product and specifically disclaims any and all liability, including without limitation any
consequential or incidental damages.
Products are not designed, intended, or authorized for use as components in systems
intended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S could create a situation where personal injury or
death may occur. Should the Buyer purchase or use a F&S product for any such unintended
or unauthorized application, the Buyer shall indemnify and hold F&S and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly,
any claim of personal injury or death that may be associated with such unintended or
unauthorized use, even if such claim alleges that F&S was negligent regarding the design or
manufacture of said product.

