
NSPI Driver
Native SPI Support

Version 3.1
(2013-03-13)

NetDCU
PicoMOD
PicoCOM

Windows CE

About This Document
This document describes how to install the Native SPI device driver (NSPI) and how to use it
in own software applications. The driver is available for the PicoCOM, PicoMOD and Net
DCU series of boards from F&S under Windows Embedded CE. The latest version of this
document can be found at http://www.fs-net.de.

All available versions of the driver, V1.x, V2.x and V3.x are handled in this document.

Remark

The version number on the title page of this document is the version of the document. It is
not directly related to the version number of the driver software described herein.

How To Print This Document

This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions

We use different fonts to emphasize the context of special terms:

File names

Menu entries

Program code

Listings

Board input/output

© 2013

F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

i

8 9

Title-

page

http://www.fs-net.de/

ii

History
Date V Platform A,M,R Chapter Description Au
2009-03-16 2.0 A, M New document format, NSPI driver V2.0 HK
2011-11-08 V3.0 A, M 1-6, 8-9 New document format (ODF), NSPI driver V3.0, SPI explana

tion and introduction completely restructured
HK

2011-11-14 V3.1 M 3 PicoCOM4 added MK
2013-03-13 V3.2 A 4.3 Supported Driver-Methods documented MK

V Version

A,M,R Added, Modified, Removed

Au Author: CZ, DK, HF, HK, MK

iii

iv

Table of Contents
1 Introduction 1

2 The Serial Peripheral Interface 2
2.1 Bus Topology...2
2.2 SPI Commands..3
2.3 Transfer Direction..4
2.4 Protocol..5
2.5 SPI Mode...5
2.6 Data Delay...7
2.7 Interrupt-Driven Communication..7
2.8 Multiple Chip Selects..8

3 The F&S Native SPI Driver 9
3.1 Driver Versions...9
3.2 Possible interface conflicts...10
3.3 Pin Assignment..10

4 Installing the NSPI Driver 12
4.1 Installation with the CAB file...12
4.2 Manual installation...12
4.3 Registry Values in [HKLM\Drivers\BuiltIn\SPIn]..13
4.3.1 ClockFreq...14
4.3.2 SPIMode..14
4.3.3 DriverMethod..15
4.3.4 Priority256..16
4.3.5 SPIController..16
4.3.6 DummyByte...16
4.3.7 DataDelay..16
4.3.8 CsPin...17
4.3.9 GenTimeout...17
4.3.10 IrqPin...17
4.3.11 IrqCfg...17
4.3.12 IrqTimeout..18
4.3.13 Debug..18
4.4 Registry Values in [HKLM\Drivers\SPIControllerX]...18
4.4.1 DmaBufferSize...19
4.4.2 DmaTxChannel and DmaRxChannel...19
4.4.3 DmaTriggerLevel...19
4.4.4 IrqTriggerLevel...20
4.4.5 ThreadSync..20
4.5 Using Different Chip Selects..20
4.6 Choosing the Driver Method...23

5 The NSPI Driver in Applications 26

v

6 NSPI Reference 27
6.1 CreateFile()..27
6.2 WriteFile()..29
6.3 ReadFile()..30
6.4 CloseHandle()..31
6.5 DeviceIoControl()...32
6.6 IOCTL_NSPI_SEND..34
6.7 IOCTL_NSPI_RECEIVE..36
6.8 IOCTL_NSPI_TRANSFER...38
6.9 IOCTL_NSPI_EXCHANGE..40
6.10 IOCTL_NSPI_WAITIRQ_SEND...42
6.11 IOCTL_NSPI_WAITIRQ_RECEIVE...44
6.12 IOCTL_NSPI_WAITIRQ_TRANSFER..46
6.13 IOCTL_NSPI_WAITIRQ_EXCHANGE...48
6.14 IOCTL_NSPI_GET_CLOCKFREQ...50
6.15 IOCTL_NSPI_SET_CLOCKFREQ...51
6.16 IOCTL_NSPI_GET_MODE..52
6.17 IOCTL_NSPI_SET_MODE...53
6.18 IOCTL_NSPI_GET_METHOD...54
6.19 IOCTL_NSPI_SET_METHOD..55
6.20 IOCTL_NSPI_GET_DUMMYBYTE..56
6.21 IOCTL_NSPI_SET_DUMMYBYTE...57
6.22 IOCTL_NSPI_GET_DATADELAY..58
6.23 IOCTL_NSPI_SET_DATADELAY..59
6.24 IOCTL_NSPI_GET_GENTIMEOUT...60
6.25 IOCTL_NSPI_SET_GENTIMEOUT...61
6.26 IOCTL_NSPI_GET_IRQTIMEOUT..62
6.27 IOCTL_NSPI_SET_IRQTIMEOUT...63
6.28 IOCTL_NSPI_CLEAR_IRQ..64
6.29 IOCTL_DRIVER_GETINFO...65

7 Sample Program 67

8 Header File nspiio.h 70

9 Appendix 74
Listings..74
List of Figures..75
List of Tables...75
Important Notice..76

vi

vii

Introduction

1 Introduction
SPI (Serial Peripheral Interface) is a bi-directional serial bus to connect a master device to
one or more slave devices. The main communication takes place on a 1:1 basis as only one
slave device is activated by a chip select signal. SPI can handle speeds of up to several
megahertz.

F&S boards usually provide an SPI driver that uses General Purpose I/Os (GPIOs) for CLK,
MISO, MOSI, and CS. This is rather flexible as most of the GPIOs provided by the board are
supported and the user can decide which GPIO to use for each SPI signal. However as the
SPI timing on this GPIO driver is done by software (“bit banging”), it uses quite a lot of CPU
time and is still rather slow, at most several kilohertz.

Therefore F&S has developed another device driver that uses the native, dedicated SPI
hardware available on all our micro controllers. This driver is called “Native SPI driver” or
NSPI in short, and now actually allows for speeds of several megahertz.

The NSPI driver has now reached version 3.x. This document handles all three driver ver
sions, V1.x, V2.x and V3.x. It does not handle the SPI over GPIO bit banging driver.

About this Document

After a short description of the SPI bus protocol, we'll introduce the Native SPI device driver
available for the F&S Windows CE board families. We show how it is installed on the board,
how it is configured, and how it is used in own applications by issuing transfer commands.
We also show the difference between the available driver versions. The main part of the doc
ument is the application programming interface (API) reference that discusses all functions
provided by the driver, including examples.

Remark

In this document, we will sometimes use the generic term “NetDCU” or simply “board” for all
our boards and modules. It should also mean PicoMOD, PicoCOM or any other future board
type or family, where the NSPI driver is available. We will also refer to the driver file gener
ally as nspi.dll, even if the real name may have a board specific prefix added, e.g.
pm3_nspi.dll on a PicoMOD3. We hope that this does not cause any inconvenience.

1

The Serial Peripheral Interface

2 The Serial Peripheral Interface

2.1 Bus Topology

An SPI bus can be used to transfer data between a master device and one or more slave
devices. It consists of the following signals:

1. A data line from the slave to the master, called MISO (Master In, Slave Out).

2. A data line from the master to the slave, called MOSI (Master Out, Slave In).

3. A clock signal CLK. The clock is always generated by the master.

4. A chip select signal CS generated by the master. The slave device reacts if CS goes
low, otherwise it ignores everything that happens on the bus.

The simplest SPI bus therefore has four signal lines, where the slave drives one line (if se
lected) and the master the remaining three lines (all the time).

If more than one slave is connected to the bus, each slave has its own chip select signal, in
creasing the number of required lines by one per additional slave device. But notice that at
most one chip select is allowed to be active at any time, so the communication still happens
on a 1:1 basis between the master and the one slave selected by the active chip select sig
nal. Of course only this slave is allowed to send data on the MISO line.

2

Figure 2: SPI Bus with Master and Three Slaves

Master

Slave 1 Slave 2 Slave 3

MISO

MOSI

CLK

CS1

CS2

CS3

Figure 1: SPI Bus with Master and Slave

Master Slave

MISO

MOSI

CLK

CS

The Serial Peripheral Interface

2.2 SPI Commands

By design, the data transfer is bit-oriented. So theoretically it is possible to transfer in units of
arbitrary length, for example 5 bits, 10 bits or even larger units like 300 bits or more. A 12-bit
A/D converter for instance could return one converted value with every 12-bit SPI cycle.
However nowadays most SPI devices handle data in multiple of bytes, i.e. 8 bits.

Only very simple SPI devices have an SPI cycle where data is exchanged in the same way
all the time. Most slaves are capable of doing different things. By sending a command, the
master tells the slave what to do next. This command can consist of one or more bytes at
the beginning of the SPI cycle. This command also determines whether there is further data
and how the data is to be interpreted.

For example the slave may be some memory device. Then the command could tell whether
the memory should be read or written and it could also give a base address where to start.
Assuming a 16-bit address, the command would consist of three bytes: one byte telling
whether to read or write and two bytes for the address. The remaining bytes would be the
data bytes to read or write. The transfer could have any length. Each new byte would access
the next memory address. The transfer would end when the chip select is de-asserted.

Such devices actually exist. In Chapter 7 on Page 66 we have a sample program that ac
cesses an FM25CL64 device. This is exactly such a memory device with 64KB of memory
and it supports exactly such read and write commands. To prevent unintended memory
modifications, this device also has an additional write-protect mechanism so that each write
cycle must be preceded by a special write-enable cycle. And the device also has a status re
gister that can be read and written with two additional commands. So in the end this SPI
slave supports a set of five commands with different lengths and different transfer directions.

3

Figure 4: SPI Cycle with Command and Data Phase

Command Phase Data Phase

Figure 5: Sample Set of Slave Commands

WREN

RDSR
Old

Content

WRSR
New

Content

READ Address Old Data From Memory (Any Length, Slave to Master)

WRITE Address New Data For Memory (Any Length, Master to Slave)

Write Enable

Read Status Reg

Write Status Reg

Read Memory

Write Memory

(No Data)

(One Data Byte, Slave to Master)

(One Data Byte, Master to Slave)

Figure 3: Arbitrary Number of Bits in SPI Cycle

12-bit Data

SPI Cycle 1

12-bit Data

SPI Cycle 2

...

The Serial Peripheral Interface

Rather common are SPI devices that are based on registers. Again there is command and
register address (register number). But as the set of registers is usually rather small, the re
gister number can be encoded in the first command byte itself already. So these devices of
ten use exactly one command byte.

Figure 6: Register Based SPI Device

2.3 Transfer Direction

The SPI protocol is insofar interesting as it works bi-directional, i.e. always sends data in
both directions at the same time. So with each clock cycle, one bit is sent on the MOSI line
and at the same time one bit is received on the MISO line. If a transfer only receives, dummy
bits must be sent on the MOSI line. If a transfer only sends, the received bits from the MISO
line can be discarded.

4

Figure 7: Different Transfer Directions

Dummy Data
MOSI

MISO
Received Data

“Receive-only”

Data to Send
MOSI

MISO
Received Data

“Send-and-Receive”

Data to Send

Incoming Data
Is Discarded

MOSI

MISO

“Send-only”

 Operation Register

Command

Slave

RegistersOperations

Read
Write
Modify
Clear
Reset 7:

0:
1:
2:
3:
4:
5:
6:

Register Value

Data

The Serial Peripheral Interface

Switching the transfer direction within one SPI cycle is rather common. For example the
command phase is always send-only, but the data phase can be any direction.

Figure 8: Change of Transfer Direction within an SPI Cycle

2.4 Protocol

It is the task of the device designer to provide a command set to allow efficient transfers. Us
ing both directions as often as possible proves to be most efficient. For example in the
memory device above, the MISO line is unused during memory writes. As an improvement,
the WRITE command of this device could be modified in a way so that the old memory con
tent is returned via the MISO line while the new data is sent, resulting in a READ-WRITE
command. At least in some cases this improvement could avoid a separate read cycle be
fore writing the new data. So the average performance of this device could be increased.

As you can see from this memory device example, providing an SPI slave also requires set
ting up a command protocol. It is not possible to have a generic protocol that will work for all
slaves. This is why the F&S Native SPI driver does not support being a slave. We simply can
not define a protocol because we can't anticipate what function the board will serve in the
customer's application in the end. Therefore the driver can act as an SPI master only.

2.5 SPI Mode

Unfortunately the clock signal CLK is not handled in the same way on all SPI devices. A bit
cycle may start with CLK high or CLK low and the data may be latched on the falling or the
rising edge of CLK. This results in four possible SPI modes (see Figure 10). At least there
seems to be some agreement among device manufacturers how to number these modes.

● SPI Mode 0: CLK is active high, data is valid and latched on first (=rising) edge.

● SPI Mode 1: CLK is active high, data is valid and latched on second (=falling) edge.

● SPI Mode 2: CLK is active low, data is valid and latched on first (=falling) edge.

● SPI Mode 3: CLK is active low, data is valid and latched on second (=rising) edge.

5

Figure 9: Improved Combined READ-WRITE Memory Command

READ-
WRITE

Address
New Data For Memory (Any Length, Master to Slave)+
Old Data From Memory (Same length, Slave to Master)

New Read-Write

Dummy Data
MOSI

MISO
Received Data

Command

Discarded

“Send-only” “Receive-only”

The Serial Peripheral Interface

Please note that SPI devices usually can not handle all modes. Most devices support only
one or at most two modes. You have to check the specifications of the device to find out.

6

Figure 10: SPI Modes

CLK

CS

MOSI MSB B6 B5 B4 B3 B2 B1 LSB

MISO MSB B6 B5 B4 B3 B2 B1 LSB MSB

SPI Mode 0

Next Frame

CLK

CS

MOSI MSB B6 B5 B4 B3 B2 B1 LSB

MISO MSB B6 B5 B4 B3 B2 B1 LSB

SPI Mode 1

CLK

CS

MOSI MSB B6 B5 B4 B3 B2 B1 LSB

MISO MSB B6 B5 B4 B3 B2 B1 LSB MSB

Next Frame

SPI Mode 2

CLK

CS

MOSI MSB B6 B5 B4 B3 B2 B1 LSB

MISO MSB B6 B5 B4 B3 B2 B1 LSB

SPI Mode 3

The Serial Peripheral Interface

2.6 Data Delay

Some SPI slaves need some time after the command to prepare the result, for example to
read some internal register. When accessing such a slave, the master must insert a short
pause after the command phase before continuing with the data phase.

2.7 Interrupt-Driven Communication

Some SPI devices provide features that can happen asynchonously to the normal workflow.
These devices have an additional interrupt request signal IRQ to tell the master of this ex
ternal event. For example an SPI device providing additional external I/Os could inform the
master of a state change of one of the input lines. Or an A/D converter can inform the mas
ter of a completed complex conversion.

After asserting the IRQ line, the master should start an SPI cycle as soon as possible to re
act to this event. In our example, the master would either check the I/O line states or fetch
the conversion result then.

7

Figure 11: Data Delay

Command Phase Data Phase

Delay

Figure 12: Interrupt Request Line

Master Slave

MISO

MOSI

CLK

CS

IRQ

Figure 13: SPI Cycle after IRQ

CLK

CS

MOSI

MISO

IRQ

Interrupt Due to External Event

SPI Cycle as Reaction to Interrupt RequestLatency

The Serial Peripheral Interface

2.8 Multiple Chip Selects

As an SPI device should ignore the bus if it is not selected by the CS signal, it does not mat
ter what protocol other devices work with. It is perfectly OK that one device on the bus runs
at one speed, mode and command set while another device runs at a different speed, mode
and command set. The master just has to switch to the appropriate settings before access
ing each device, i.e. before asserting the chip select.

This allows combining arbitrary devices on one bus. The only drawback is that the bus is
blocked for all other devices while one device is serviced, probably causing unwanted con
tentions.

8

Figure 14: One SPI Bus with Arbitrary Devices

Master

Slave 1
10 MHz, Mode 0

Slave 2
10 MHz, Mode 3

Slave 3
2 MHz, Mode 0

MISO

MOSI

CLK

CS1

CS2

CS3

The F&S Native SPI Driver

3 The F&S Native SPI Driver

3.1 Driver Versions

The NSPI driver has now reached version 3.x. Each new major version represents major
feature improvements that also affect the driver interface. Each minor version represents
bug fixes or small improvements that usually do not change the driver interface. Here is a
short overview of the features provided by each major version.

Features of V1.x

● Only one slave device supported (one chip select). The F&S board is always the
master.

● Transfers can be handled with DeviceIoControl() only.

● Four different transfer commands: send-only, receive-only, send-and-receive with dif
ferent buffers, send-and-receive with one buffer (incoming data replaces outgoing
data).

● All settings have to be done via the registry, not changeable at runtime.

Features added in V2.0 (March 2009)

● Transfers with ReadFile() and WriteFile() to support the Stream class in
.NET.

● Support for more than one SPI controller.

● Possibility to query and modify the driver method, bus speed and SPI mode at
runtime.

● Possibility to determine driver version at runtime.

Features added in V3.0 (October 2011)

● Support for more than one chip select signal per SPI controller. Any I/O pin can be
used.

● Additional transfer commands that wait for an interrupt before issuing the SPI cycle.
This allows to react more promptly to an incoming signal. Any interrupt-capable I/O
pin can be used. Interrupt type (edge or level) and timeout can be configured.

● The dummy byte that is sent in receive-only transfers can be configured.

● The driver can issue a short delay between command and data bytes.

● The general NSPI driver timeout can be configured.

9

The F&S Native SPI Driver

Which driver version you have can be determined by looking at the debug output of the
board. The first line starting with NSPI: shows the appropriate driver version. In V2.0, there
was also an IOCTL command code added called IOCTL_DRIVER_GETINFO. If this com
mand succeeds, it returns the appropriate driver version in a data structure. If it fails, it is a
V1.x driver.

3.2 Possible interface conflicts

Please note that on some devices, the native SPI interface also might be used internally.
Hence you might need to keep this into account for proper function of SPI interface. Here is
a list of known issues:

Board Competing interface

PicoCOM4 CAN interface

Table 1: List of possible mutual interferences

Please refer to the corresponding documentation for details on how to handle this mutual in
terference.

3.3 Pin Assignment

With the Native SPI driver, you are not free to choose the pins to use like with the GPIO SPI
driver. Instead they are given by the SPI hardware on the board. The following table shows
the dedicated SPI lines on the different boards. On the PicoMOD modules, we give the pin
number of the module connector itself and of the connector on the starter interface board.

Board Connector MISO MOSI CLK CS

NetDCU5.2 J5 Pin 10 Pin 11 Pin 15 Pin 13

NetDCU8 J5 Pin 4 Pin 3 Pin 2 Pin 6

NetDCU9 J5 Pin 10 Pin 11 Pin 15 Pin 13

NetDCU10 J5 Pin 4 Pin 3 Pin 2 Pin 6

NetDCU11 J5 Pin 10 Pin 11 Pin 15 Pin 13

PicoMOD3 Module
PicoMOD3 Startinterface

J1
J5

Pin 3
Pin 4

Pin 4
Pin 3

Pin 2
Pin 2

Pin 1
Pin 6

PicoMOD6 Module
PicoMOD6 Startinterface

J1
J5

Pin 3
Pin 4

Pin 4
Pin 3

Pin 2
Pin 2

Pin 1
Pin 6

10

The F&S Native SPI Driver

PicoCOM4 Module
PicoCOM4 Startinterface

J1
J10

Pin 26
Pin 3

Pin 27
Pin 4

Pin 28
Pin 5

Pin 29
Pin 6

Table 2: Pin Assignment of SPI Signals

You can use this driver in combination with the GPIO SPI driver, if both drivers are available
on the platform. But please make sure that the other driver is not configured to use the
above pins or otherwise the drivers will get into conflict.

Remark

As already mentioned, starting with V3.0, you can use more than one chip select signal to
drive different SPI devices on one SPI bus. You can use any arbitrary I/O signal as chip se
lect that is not occupied with other functions. But notice that MISO, MOSI and CLK are still
fixed to the above pins, and if not specified, the driver still uses the above CS pin as default.

11

Installing the NSPI Driver

4 Installing the NSPI Driver
The NSPI driver is usually installed as SPI1:. We provide a special Windows Cabinet File
(“CAB-File”) for an automatic installation, but you can also do the installation manually.

4.1 Installation with the CAB file

The easiest way to install the driver is to use the provided Windows Cabinet File nspi.cab.
Just copy this file to the board (e.g. to the root directory) and double click on it. This will auto
matically install the driver as SPI1:. When asked for a destination directory, just click OK.
All registry settings will be done for the default values and the CAB file will vanish again
when done.

If you don’t have access to a mouse or touch panel on the NetDCU, or if you even don’t use
a display at all, you can also do the CAB file installation on the command line. Just type the
following command:

wceload /noui nspi.cab
If you need settings other than the defaults, you can edit the registry values anytime after in
stallation is complete.

4.2 Manual installation

You can also do the installation by hand. To do this you first have to store the library file
nspi.dll in flash memory into the \FFSDISK directory, if it is not already pre-loaded in the
kernel. Then you have to set some registry values under registry key

[HKLM\Drivers\BuiltIn\SPIn]

where n is the SPI device to create. The possible values are described in Chapter 4.3 on
Page 13.

Starting with driver version 2.0 it is also possible to configure some more controller specific
values. This takes place under the registry key

[HKLM\Drivers\SPIControllerX]

where X is the zero-based index of the SPI controller (0 if only one controller is available).
The possible values are described in Chapter 4.4 on Page 18.

On some boards it is possible to have more than one SPI bus. Then you have to select the
correct controller for each device that you define. Each controller will handle one SPI bus.

Starting with V3.0, you can use different chip select signals for each SPI controller to drive
more than one device on the SPI bus. Then you have to create one such SPI key under
BuiltIn for each chip select and define different indexes and different I/O pins to use as
chip selects. Each device will then be available with its own SPIn: device name.

12

Installing the NSPI Driver

4.3 Registry Values in [HKLM\Drivers\BuiltIn\SPIn]

The following values can be configured in registry key

[HKLM\Drivers\BuiltIn\SPIn]

where n is the SPI device to create. Most of the values will get meaningful defaults if omit
ted, only those values in the first five rows highlighted in blue with shaded background really
have to be given.

Entry Type Value Description

Dll String nspi.dll Driver DLL

FriendlyName String Native SPI driver Description

Prefix String SPI For SPI1:

Index DWORD 1 For SPI1:

Order DWORD 101 Load sequence

ClockFreq DWORD 200000 in Hz

SPIMode DWORD 0 SPI mode

DriverMethod DWORD 0 IRQ, Polling, DMA

Priority256 DWORD 103 Thread priority

SPIController DWORD 0 Index of SPI controller1)

DummyByte DWORD 255 Byte sent in receive-only transfers1)

DataDelay DWORD 0 Delay between command and data
bytes (in ns!)2)

CsPin DWORD (depends on board) Pin number to use for chip select2)

GenTimeout DWORD 1000 Timeout for SPI functions (in ms)2)

IrqPin DWORD 0xFFFFFFFF Pin for WAITIRQ interrupt input2)

IrqCfg DWORD 2 WAITIRQ edge/level configuration2)

IrqTimeout DWORD 1000 WAITIRQ timeout (in ms)2)

Debug DWORD 0 Debug verbosity

1) Introduced in V2.0 2) Introduced in V3.0

Table 3: NSPI Registry Values

The detailed meaning of these values is explained in the following sub-chapters.

13

Installing the NSPI Driver

4.3.1 ClockFreq

ClockFreq defines the frequency of the clock signal CLK. The clock is derived from a base
frequency by dividing by an integer. Therefore not all frequencies can be achieved exactly.
But for any given ClockFreq, the driver will automatically choose the divider for the nearest
possible frequency.

Board
Base

Frequency
Possible
Dividers

Minimum
Frequency

Maximum
Frequency

NetDCU5.2 1.84 MHz 1 to 256 7.2 kHz 1.84 MHz

NetDCU8 25.5 MHz 1 to 256 99.6 kHz 25.5 MHz

NetDCU9 13 MHz 1 to 4096 3.174 kHz 13 MHz

NetDCU10 25.5 MHz 1 to 256 99.6 kHz 25.5 MHz

NetDCU11 13 MHz 1 to 4096 3.174 kHz 13 MHz

PicoMOD3 66.5 MHz 2 to 512 130 kHz 33.25 MHz

PicoMOD6 66.5 MHz 2 to 512 130 kHz 33.25 MHz

PicoCOM4 66.5 MHz 2 to 512 130 kHz 33.25 MHz

Table 4: NSPI Frequency Range

This value can also be modifed at runtime with IOCTL_NSPI_SET_CLKFREQ (only V2.0 and
newer).

4.3.2 SPIMode

Entry SPIMode defines the active mode (polarity) and the active edge (phase) of the clock
signal.

SPIMode Description Signal

0 Clock active high, data valid on 1st (=rising) edge

1 Clock active high, data valid on 2nd (=falling) edge

2 Clock active low, data valid on 1st (=falling) edge

3 Clock active low, data valid on 2nd (=rising) edge

Table 5: SPI Mode (Polarity and Phase)

14

Installing the NSPI Driver

This value can also be modified at runtime with IOCTL_NSPI_SET_MODE (only V2.0 and
newer).

4.3.3 DriverMethod

Entry DriverMethod determines the method how bytes are transmitted. This has an influ
ence on the speed, the latency and how much CPU load the driver takes.

DriverMethod Method Function

0 IRQ The driver issues a byte to the SPI, then goes to sleep.
After the byte is transmitted, the driver is woken up again
by an SPI interrupt request to transfer the next byte.

1 Polling The driver issues a byte to the SPI, then waits in a busy
loop, polling the “Transmit-complete” flag. When the trans
mission is done, it issues the next byte.

2 DMA The driver sets up the DMA-Controller to handle the trans
mission by direct memory access to the SPI. Then it goes
to sleep and is woken up again by a DMA interrupt request
when the transmission is completely done.

Table 6: NSPI Transfer Methods

This value can also be modified at runtime with IOCTL_NSPI_SET_METHOD (only V2.0 and
newer).

Remark

DriverMethod is currently not implemented on the NetDCU5.2. This board automatically
uses an IRQ mode combined with the hardware FIFO available on the SPI there. The Net
DCU9, NetDCU11, PicoMOD3 and PicoMOD6 do support the DriverMethod entry, but
they currently only support IRQ and Polling, not DMA.

Board
IRQ-Method

(0)
POLLING-Method

(1)
DMA-Method

(2)

NetDCU5.2

NetDCU8/9/10/11

PicoMOD3/4/6

PicoCOM4

Table 7: Supporter Driver-Methods

15

Installing the NSPI Driver

4.3.4 Priority256

The actual transfer will take place with the Windows CE priority given in Priority256.
Changing this value is only required if the NSPI driver does interfere with other drivers. A
lower value means higher priority, a higher value means lower priority. The region is 0 to
255.

Attention:

A value too small (= very high priority) may block other device drivers, resulting in
sporadic malfunctions.

4.3.5 SPIController

This entry tells the driver which SPI controller to use. The appropriate controller information
will be found under [HKLM\Drivers\SPIControllerX] (see Chapter 4.4 on Page 18).

4.3.6 DummyByte

This entry tells the driver what byte value to send in receive-only transfers. SPI always is a
bi-directional transmission. That means for each bit that is received also one bit must be
sent. In phases where only data is received, dummy bits must be sent. As the transfer with
this driver is byte-based, we have to give a byte value here. V1.x and V2.x always used the
constant value 0xFF. Starting with V3.0, this value can be configured. This allows to set a
different dummy value if an SPI device does interpret 0xFF in an undesired way.

This value can also be modified at runtime with IOCTL_NSPI_SET_DUMMYBYTE.

4.3.7 DataDelay

Some SPI devices need some time after they receive the command until they can return the
answer. So it is required that the master pauses for a short period of time before continuing
the SPI cycle. Starting with V3.0, such a delay can be configured with this entry. The value is
given in nanoseconds (!) and the delay is internally done by a busy-wait loop. Please note
that even if the timing can be given in nanoseconds, reasonable values are in the micro
seconds region. This is due to implementation restrictions.

This value can also be modified at runtime with IOCTL_NSPI_SET_DATADELAY.

16

Installing the NSPI Driver

Remark

When using the DMA driver method, the DataDelay value is ignored. This method always
combines command and data phase to one single DMA transfer that allows no pauses.

4.3.8 CsPin

Starting with V3.0, the chip select pin can be configured freely among all available I/O pins of
the board. This is done by giving the pin number of the I/O pin to use here. Please refer to
the Device Driver Documentation of your board for the possible values here. It is basically
the same value that you would use when setting a pin value with IOCTL_DIO_SET_PIN in
the DIO driver.

What is even more, you can use more than one chip select signal on an SPI bus. This is
done by activating several instances of the NSPI driver in the registry where each instance
uses a different CsPin value. You can even use different settings for all the other entries.
The driver will automatically switch to the correct settings when talking to the device on this
chip select. This explained in more detail in Chapter 4.5 on Page 20.

V1.x and V2.x only can use the one chip select that is given in 2 on Page 11.

4.3.9 GenTimeout

Some calls to the NSPI driver may block, for example because another thread already uses
the SPI controller. By setting this value, you can tell the driver how long it should wait in such
blocking situations until it gives up and returns with an ERROR_TIMEOUT error. This entry
was added in V3.0. The older versions wait indefinitely.

This value can also be modified at runtime with IOCTL_NSPI_SET_GENTIMEOUT.

4.3.10 IrqPin

In V3.0, new transfer commands were introduced that wait for an interrupt before issuing the
SPI cycle. By setting this value, you define what I/O pin to use as interrupt input. Any inter
rupt capable I/O pin of the board can be used. Please refer to the Device Driver Documenta
tion of your board for the possible values here. It is basically the same value that you would
use when requesting an interrupt in the DIO driver with IOCTL_DIO_REQUEST_SYSINTR.

V1.x and V2.x do not support this interrupt feature.

4.3.11 IrqCfg

This value defines the type of interrupt that must happen on the IrqPin. The possible val
ues are shown in this table. They correspond to the binary value built by registry values
IRQCfg2 to IRQCfg0 in the DIO driver.

17

Installing the NSPI Driver

IrqCfg Interrupt Type

1 Rising edge

2 Falling edge

3 Rising and falling edge

5 High level

6 Low Level

Table 8: Possible Interrupt Types

4.3.12 IrqTimeout

This value defines how long the driver will wait at most for the interrupt on IrqPin before it
gives up and returns with WAIT_TIMEOUT error. This IrqTimeout is independent from
GenTimeout and only is valid when waiting for an interrupt with one of the WAITIRQ trans
fer functions.

This value can also be modified at runtime with IOCTL_NSPI_SET_IRQTIMEOUT.

4.3.13 Debug

If the Debug entry is set to a value different to zero, the driver will output additional informa
tion on the debug port. Each bit enables a different category of output. This information is
usually not required and only necessary when looking for errors in the driver. Keep this value
at zero to have the best possible performance.

4.4 Registry Values in [HKLM\Drivers\SPIControllerX]

Starting with driver version 2.0 it is also possible to configure some more controller specific
values. This takes place under the registry key

[HKLM\Drivers\SPIControllerX]

where X is the zero-based index of the SPI controller (0 if only one controller is available).

Entry Type Value Description

DmaBufferSize DWORD 4096 Size of the internal DMA buffer1)

DmaTxChannel DWORD 3 DMA channel to use for sending1)

DmaRxChannel DWORD 4 DMA channel to use for receiving1)

DmaTriggerLevel DWORD 16 FIFO level required to trigger DMA request1)

18

Installing the NSPI Driver

IrqTriggerLevel DWORD 16 FIFO level required to trigger IRQ1)

ThreadSync DWORD 1 Use internal thread synchronization2)

1) Introduced in V2.0 2) Introduced in V3.0

Table 9: NSPI Registry Settings for the SPI Controller

The detailed meaning of these values is explained in the following sub-chapters.

4.4.1 DmaBufferSize

This entry is only valid in DMA mode. It determines the size of the internal buffer. To use
DMA, the data has to be copied to and from a special consecutive uncached buffer that can
also be accessed by the DMA controller hardware. Please note that this increases the trans
fer time in DMA mode. Default is to use one memory page, i.e. 4096 bytes.

4.4.2 DmaTxChannel and DmaRxChannel

These entries are only valid in DMA mode. They determine which DMA channel to use for
sending (DmaTxChannel) and receiving (DmaRxChannel). Which channels are available
depends on the other hardware in use. For example on the PicoMOD3, there are 32 chan
nels available, but when using audio, channels 1 and 2 are already occupied.

The driver always uses both channels, even if you only send or only receive data with your
call.

The NetDCU8 and NetDCU10 only support send-only or receive-only transfers via DMA and
they use DMA channel 3 by default. This is a hardware restriction an can not be changed.

4.4.3 DmaTriggerLevel

This value is only valid when using DMA driver method on boards having a send and receive
FIFO embedded in the SPI controller hardware. It defines how many bytes must have been
received in the receive FIFO to trigger the next DMA request. Setting a small value increases
DMA overhead as the FIFO is not used efficiently. Setting a too high value may cause a
FIFO overrun if the DMA can not be handled fast enough due to DMA priorities. Default is to
use half of the FIFO size.

4.4.4 IrqTriggerLevel

This value is valid only when using IRQ driver method on boards having a send and receive
FIFO embedded in the SPI controller hardware. It defines how many bytes must have been
received in the receive FIFO to trigger the next interrupt request. Setting a small value in
creases interrupt overhead as the FIFO is not used efficiently. Setting a too high value may

19

Installing the NSPI Driver

cause a FIFO overrun if the interrupt can not be handled fast enough due to thread priorities.
Default is to use half of the FIFO size.

4.4.5 ThreadSync

In V1.x and V2.x, all thread synchronisation takes place within the driver. Starting with V3.0,
you can tell the driver that you do not need this internal thread synchronisation. This may be
the case if your application only uses one single thread to access the NSPI driver or that you
handle all synchronisation yourself within the application.

ThreadSync Meaning

0 Don't use any thread synchronisation

1 Use internal thread synchronisation

Table 10: Thread Synchronisation Values

This is just an optimisation setting. If no internal synchronisation is required, the driver will
run a little bit faster. This may be of interest if you are using the WAITIRQ functions and want
the shortest possible response time to the interrupt. Disabling internal synchronisation may
save up to 20 µs then, depending on the board.

4.5 Using Different Chip Selects

Starting with V3.0, the NSPI driver is capable of driving different chip select lines on each
SPI bus. This is done by configuring a separate SPI device for each chip select in the re
gistry. Each of these devices uses a different value for the CsPin entry, but the same value
for the SPIController entry (= same SPI bus).

Example

The SPI bus on controller 0 should serve three chip selects:

Device I/O Pin Speed SPI Mode

SPI1: Default 10 MHz 0

SPI2: 14 10 MHz 3

SPI3: 15 2 MHz 0

Table 11: Different Chip Selects

This would result in the following registry entries:

In [HKLM\Drivers\BuiltIn\SPI1]:

20

Installing the NSPI Driver

Entry Type Value

Dll String nspi.dll

FriendlyName String Native SPI, CS1

Prefix String SPI

Index DWORD 1

Order DWORD 101

ClockFreq DWORD 10000000

SPIMode DWORD 0

SPIController DWORD 0

In [HKLM\Drivers\BuiltIn\SPI2]:

Entry Type Value

Dll String nspi.dll

FriendlyName String Native SPI, CS2

Prefix String SPI

Index DWORD 2

Order DWORD 102

ClockFreq DWORD 10000000

SPIMode DWORD 3

SPIController DWORD 0

CsPin DWORD 14

In [HKLM\Drivers\BuiltIn\SPI3]:

Entry Type Value

Dll String nspi.dll

FriendlyName String Native SPI, CS3

Prefix String SPI

Index DWORD 3

Order DWORD 103

ClockFreq DWORD 2000000

SPIMode DWORD 0

SPIController DWORD 0

CsPin DWORD 15

Each device holds its own set of driver settings. So not only speed and SPI mode can be dif
ferent on different chip selects, but all settings under [HKLM/Drivers/BuiltIn/SPIn]
can be configured individually. The driver will automatically switch to the appropriate settings
before asserting one of the chip selects.

21

Figure 15: Virtual Connection Between Devices and Slaves

SPI1: Slave 1 on CS1Thread 1

SPI2:

SPI3:

Slave 2 on CS2

Slave 3 on CS3

Thread 2

Thread 3

SPI Bus

NSPI Driver

Master SPI Slaves

Application SPI Function

Hardware View

Software View

Installing the NSPI Driver

Now if the software wants to talk to the SPI slave with CS1, it has to use device SPI1:. Ac
cordingly if it wants to talk to CS2, it has to use SPI2:, and if it wants to talk to CS3, it has to
use SPI3:. In fact these devices could also be used by different threads or even processes.
The NSPI driver automatically serialises the accesses to the SPI bus in a first come first
served manner. So from the view of the software, the SPI bus is more or less invisible, and it
looks as if it can talk directly to the slave via a virtual direct connection just by using the ap
propriate device.

The only thing to consider are contention issues that may arise if different threads want to
access the SPI bus at the same time.

4.6 Choosing the Driver Method

The SPI transfer speed is not only determined by the clock frequency. There are also laten
cies at the beginning and the end of each transfer and even between the bytes, reducing the
average data rate.

Figure 16: SPI Latencies

The start and stop latencies are implicitly given by the overhead of the driver to set up and
shut down the SPI and to toggle the CS signal. The byte transfer itself is done by the SPI
hardware at full speed. But the latency between the bytes depends largely on the software
driver method.

For example on one hand, when polling the completion flag, the driver can issue the next
byte way faster than by reacting to an interrupt request in IRQ mode, which might involve a
Windows task switch. But on the other hand, the busy-wait of the Polling method blocks the
CPU completely while the IRQ method allows the driver to go to sleep, freeing the CPU to
work on other tasks in the meantime. Therefore by choosing between Polling and IRQ
method, you choose between low byte latency and low CPU load.

Using the DMA method seems to solve this dilemma, as it has a very low byte latency and
does not need any help of the driver at all during the whole transmission. However there are
other restrictions here, too.

● Not enough DMA channels available. For example the NetDCU8 only has four DMA
channels. Due to hardware restrictions, SPI can only be done using DMA channel 3.
Depending on your software configuration and hardware periphery needs, this chan

22

CS

Data ByteData Byte
MOSI

CLK

Data ByteData Byte
MISO

Start Latency Stop LatencyByte Latency

Installing the NSPI Driver

nel may already be occupied by another high speed device driver, e.g. USB-Device
or SD-Card.

● DMA may have restricted access. For example DMA on the NetDCU8 does only sup
port send-only and receive-only transfers, not any combined versions. The driver will
return an error when trying to call these combined functions.

● When sending/receiving via DMA, the data bytes have to be copied to/from an in
ternal buffer. This buffer is restricted in size (currently 4096 bytes) and the copying
takes additional time, increasing the start/stop latency even more.

● The additional overhead for setting up the DMA controller registers adds quite a lot to
the start and stop latencies. Therefore DMA is not well suited for short communica
tions but gains on communications with several hundred bytes in one go.

We have done some timing measurements on a NetDCU8 (300 MHz) by reading from an
SPI memory chip at a rather high clock speed of 8.5 MHz. This would theoretically be the
nominal data rate of 8.5 Mbit/s. The reading sequence was to send three command bytes
and then read an arbitrary number of data bytes. We tested for 100 and 1000 data bytes and
measured the time for the whole transmission (from CS low to CS high again) and the byte
latency between two adjacent bytes. Then we computed the effective data rate for this trans
mission.

The remaining latency, which consists of the start and stop latencies as well as any other
delays during transmission, was computed from these numbers, too, and is not very accur
ate, just a hint of the magnitude.

Send 3 bytes, receive 100 bytes @ 8.5 MHz:

Driver Method Measured Time Effective Data Rate Byte Latency Remaining Latency

IRQ 750 µs 1.1 Mbit/s 5500 ns 106 µs

Polling 210 µs 3.8 Mbit/s 910 ns 25 µs

DMA 258 µs 3.1 Mbit/s 150 ns 149 µs

Table 12: Transfer times with short transmissions

Send 3 bytes, receive 1000 bytes @ 8.5 MHz:

Driver Method Measured Time Effective Data Rate Byte Latency Remaining Latency

IRQ 6550 µs 1.2 Mbit/s 5500 ns 109 µs

Polling 1880 µs 4.3 Mbit/s 910 ns 29 µs

DMA 1250 µs 6.4 Mbit/s 150 ns 159 µs

Table 13: Transfer times with long transmissions

23

Installing the NSPI Driver

As we can see, DMA benefits from long transmissions, and IRQ is very slow at high data
rates. Nonetheless, IRQ is very well suited for low SPI speeds, when the transmission of
every single byte takes long enough so that switching tasks in the meantime really makes
sense. Here, Polling has a big disadvantage as it takes all CPU time when waiting for every
byte transmission.

However Polling gains with high SPI speeds. If the transmitted messages are short, the total
transmission time is low compared to the overhead involved with DMA and IRQ, making up
for the busy wait involved. Or put in other words: when DMA and IRQ are still actively setting
up everything for transmission (start latency), Polling has already transferred the whole mes
sage, taking less CPU time than the other two methods.

This results in the following recommendations:

● For low data rates use DMA or IRQ.

● For high data rates and long transmissions use DMA.

● For high data rates and short transmissions use Polling.

This is only true for boards without a FIFO in the SPI hardware. If a FIFO is available, IRQ
method approves to be rather universally suited: it fills the FIFO (like in polling mode) and
only waits for an interrupt if no more bytes fit into the FIFO. The IrqTriggerLevel can be
set to a level that starts the IRQ before the FIFO empties. So we have low latency like in the
Polling method, but also low CPU load like always with IRQ method. This works in almost all
situations.

Starting with Version 2.0 of the NSPI driver, it is possible to switch the driver method at
runtime. This allows to choose the best method individually for the following transfers.

24

The NSPI Driver in Applications

5 The NSPI Driver in Applications
The F&S NSPI driver is designed to support most features available on SPI buses as de
scribed in Chapter 2. However the following points must be noted.

● The driver can only work as a master. Being a slave would involve defining a transfer
protocol, which is not possible without knowing the purpose of the board in advance.

● Transfer is byte oriented. All values are given as bytes or multiple of bytes.

● Send-and-receive transmissions are further split into Transfers and Exchanges.
Transfers send data from one place and receive data to another place. Exchanges
receive data to the same place as the data was sent. So the old data is replaced (ex
changed) with the new data.

● Modifying speed, SPI mode and driver method at runtime is possible since V2.0.

● Multiple chip selects are possible since V3.0. Each chip select is handled by a separ
ate SPI device.

● Interrupt-driven communication is possible since V3.0.

● A data delay can be defined since V3.0.

● Defining a dummy byte other than 0xFF is possible since V3.0.

As a master, MOSI, CLK and CS are output signals, MISO (and probably IRQ) are input sig
nals. The F&S board will generate the clock and chip select signals.

With the introduction of Transfers and Exchanges, we have the following transmission com
mands.

Transmission Description

Send-only Meaningful data is only transferred via the MOSI line. The received
bytes are discarded.

Receive-only Meaningful data is only transferred via the MISO line. The data sent
on the MOSI line is ignored by the device and does not matter. The
NSPI driver sends the DummyByte value in this case (usually 0xFF).

Transfer
(Send-and-Receive)

Both directions carry meaningful data. The received data is stored at
a place different to the sent data.

Exchange
(Send-and-Receive)

Both directions carry meaningful data. The received data is stored at
the same place as the sent data, replacing it.

Table 14: SPI Transmission types

The driver uses the common file interface (stream interface) to talk to the SPI bus. This
means devices are opened with CreateFile(), closed with CloseHandle(), and com
munication is done with ReadFile(), WriteFile() and DeviceIoControl().

25

NSPI Reference

6 NSPI Reference

6.1 CreateFile()

Signature

HANDLE CreateFile(
LPCTSTR lpFileName, DWORD dwAccess, DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurity, DWORD dwCreation,
DWORD dwFlags, HANDLE hTemplate

);

Parameters

lpFileName.................................Device file name, usually SPI1:

dwAccess.....................................Device access (see below)

dwShareMode...............................File share mode (see below)

lpSecurity.................................Ignored, set to NULL

dwCreation.................................Set to OPEN_EXISTING

dwFlags.......................................Set to FILE_FLAG_WRITE_THROUGH

hTemplate...................................Ignored, set to 0

Device access dwAccess

0..Device query mode

GENERIC_READ.............................Open device file read-only (receive)

GENERIC_WRITE...........................Open device file write-only (send)
GENERIC_READ | GENERIC_WRITE

Open device file in read-write mode (send & receive)

File share mode dwShareMode

FILE_SHARE_READ......................Subsequent open operations succeed only if read access

FILE_SHARE_WRITE....................Subsequent open operations succeed only if write access

Return

INVALID_HANDLE_VALUE............Failure, see GetLastError() for details

Otherwise......................................File handle

Description

Opens the SPIn: device file for access. This is required for all other functions using this SPI
bus. If the file handle is not required anymore, you have to call function CloseHandle().

26

NSPI Reference

Example

HANDLE hSpi;

hSpi = CreateFile(_T("SPI1:"), GENERIC_READ | GENERIC_WRITE, 0,
 NULL, OPEN_EXISTING, FILE_FLAG_WRITE_THROUGH, 0);
if (hSpi == INVALID_HANDLE_VALUE)
{

DWORD dwError = GetLastError();

/* Handle error in dwError */
}

Listing 1: Example CreateFile()

27

NSPI Reference

6.2 WriteFile()

Signature

BOOL WriteFile(
HANDLE hDevice, LPCVOID lpBuffer, DWORD dwLen,
LPDWORD dwActuallySent, LPOVERLAPPED lpOverlapped

);

Parameters

hDevice.......................................Handle to already open device file

lpBuffer.....................................Pointer to the buffer with data to send

dwLen..Number of bytes to send

dwActuallySent.........................Pointer to a DWORD where the number of actually sent
bytes is returned

lpOverlapped.............................Ignored, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

Sends dwLen bytes that are stored at lpBuffer to the SPI device. This is a send-only
transfer. Any command bytes that are required must be included in the data to send. As the
function can not distinguish between command and data bytes, no DataDelay is possible.

If you want to have separate command data, consider to use IOCTL_NSPI_SEND instead. If
you want to wait for an interrupt request on the IRQ line before sending data, use command
IOCTL_NSPI_WAITIRQ_SEND instead.

This function is not available in driver version 1.x.

Example

Send data bytes 0x01, 0x02, 0x03, 0x04, 0x05 to the SPI device.

DWORD dwWritten;
BYTE data[] =
{

0x01, 0x02, 0x03, 0x04, 0x05
};

WriteFile(hSpi, data, sizeof(data), &dwWritten, NULL);

Listing 2: Example WriteFile()

28

NSPI Reference

6.3 ReadFile()

Signature

BOOL ReadFile(
HANDLE hDevice, LPCVOID lpBuffer, DWORD dwLen,
LPDWORD dwRead, LPOVERLAPPED lpOverlapped

);

Parameters

hDevice.......................................Handle to already open device file

lpBuffer.....................................Pointer to the buffer where the received data is stored

dwLen..Number of bytes to receive

dwRead..Pointer to a DWORD where the number of actually received
bytes is returned

lpOverlapped.............................Ignored, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

Receives dwLen bytes from the SPI device and stores the data at lpBuffer. This is a re
ceive-only transfer, hence this function can not be used if a command is required prior to re
ceiving the data. While receiving, the value of DummyByte is sent on the MOSI line.

If you want to have a separate command phase, consider to use IOCTL_NSPI_RECEIVE in
stead. If you want to wait for an interrupt request on the IRQ line before receiving data, use
IOCTL_NSPI_WAITIRQ_RECEIVE instead.

This function is not available in driver version 1.x.

Example

Read 7 data bytes from the SPI device.

DWORD dwReceived;
BYTE data[7];

ReadFile(hSpi, data, 7, &dwReceived, NULL);

Listing 3: Example ReadFile()

29

NSPI Reference

6.4 CloseHandle()

Signature

BOOL CloseHandle(HANDLE hDevice);

Parameters

hDevice.......................................Handle to open device file

Return

0..Error, see GetLastError() for details

!=0..Success

Description

Closes the device file that was opened with CreateFile().

Example

HANDLE hSpi;

hSpi = CreateFile(...);

/* Handle SPI transmissions */

CloseHandle(hSpi);

Listing 4: Example CloseHandle()

30

NSPI Reference

6.5 DeviceIoControl()

Signature

int DeviceIoControl(
HANDLE hDevice, DWORD dwIoControlCode,
LPVOID lpInBuffer, DWORD dwInBufferSize,
LPVOID lpOutBuffer, DWORD dwOutBufferSize,
LPDWORD lpReturned, LPOVERLAPPED lpOverlapped

);

Parameters

hDevice.......................................Handle to already open device file

dwIoControlCode......................Control code specifying the device specific command to
execute

lpInBuffer.................................Pointer to the data going into the command (IN data)

dwInBufferSize.........................Size of the IN data (in bytes)

lpOutBuffer...............................Pointer to a buffer where data coming out of the com
mand can be stored (OUT data)

dwOutBufferSize......................Number of bytes available for the OUT data

lpReturned.................................Number of bytes actually written to the OUT data buffer

lpOverlapped.............................Unused, set to NULL

Description

Executes a device specific command. The type of function is given by a control code in para
meter dwIoControlCode. Each command has a specific set of parameters. Usually there
is some data going into the command (IN data) and some data is returned out of the com
mand (OUT data).

The following table lists all control codes (commands) recognised by the NSPI driver V1.x.

Control Code Function

IOCTL_NSPI_SEND Sends command and data to the SPI device

IOCTL_NSPI_RECEIVE Sends command to and then receives data from the SPI
device

IOCTL_NSPI_TRANSFER Sends command and data to the SPI device and receives
data from the device

IOCTL_NSPI_EXCHANGE Sends command and data to the SPI device and receives
data from the device. The received data replaces the sent
data.

Table 15: IOCTL command codes for V1.x

31

NSPI Reference

In V2.0, the set of control codes was extended. The following table lists all control codes that
were newly added to the NSPI driver.

Control Code Function

IOCTL_NSPI_GET_CLOCKFREQ Get the current transfer speed

IOCTL_NSPI_SET_CLOCKFREQ Set a new transfer speed

IOCTL_NSPI_GET_MODE Get the current SPI mode

IOCTL_NSPI_SET_MODE Set a new SPI mode

IOCTL_NSPI_GET_METHOD Get the current driver method

IOCTL_NSPI_SET_METHOD Set a new driver method

IOCTL_DRIVER_GETINFO Get the driver version

Table 16: Additional IOCTL command codes for V2.x

In V3.0, the set of control codes was again extended. The following table lists all control
codes that were newly added to the NSPI driver.

Control Code Function

IOCTL_NSPI_GET_DUMMYBYTE Get the current dummy byte (receive-only transfers)

IOCTL_NSPI_SET_DUMMYBYTE Set a new dummy byte (receive-only transfers)

IOCTL_NSPI_GET_DATADELAY Get the current delay between command and data

IOCTL_NSPI_SET_DATADELAY Set a new delay between command and data

IOCTL_NSPI_GET_GENTIMEOUT Get the current generic timeout

IOCTL_NSPI_SET_GENTIMEOUT Set a new generic timeout

IOCTL_NSPI_WAITIRQ_SEND Wait for IRQ, then send to SPI device

IOCTL_NSPI_WAITIRQ_RECEIVE Wait for IRQ, then receive from SPI device

IOCTL_NSPI_WAITIRQ_TRANSFER Wait for IRQ, then send to and receive from SPI

IOCTL_NSPI_WAITIRQ_EXCHANGE Wait for IRQ, then send to and receive from SPI
(new data replacing old data)

IOCTL_NSPI_GET_IRQTIMEOUT Get current timeout for waiting for IRQ

IOCTL_NSPI_SET_IRQTIMEOUT Set a new timeout for waiting for IRQ

IOCTL_NSPI_CLEAR_IRQ Clear all pending interrupts for IRQ pin

Table 17: Additional IOCTL command codes for V3.x

32

NSPI Reference

6.6 IOCTL_NSPI_SEND

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SEND

lpInBuffer.................................Pointer to command bytes; can be NULL if no command
is required

dwInBufferSize.........................Number of command bytes

lpOutBuffer...............................Pointer to the data bytes to send; can be NULL if no data
is required

dwOutBufferSize......................Number of data bytes

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sends the command bytes and then the data bytes to the SPI device. All re
ceived bytes are discarded.

If a DataDelay is set either in the registry or with IOCTL_NSPI_SET_DATADELAY, a short
pause of this length is inserted between command and data phase. See Chapter 2.6 on
Page 7 for a description of the DataDelay feature.

If not using a DataDelay, there is no difference between command and data bytes. So if
you like, you can append command and data to one buffer and use it either as IN or as OUT
array. For example this can be done when the command and data bytes are well known. In
this case this is the same as using WriteFile().

However this function makes more sense when command and data already arrive as two dif
ferent entities, for example when the command is known, but the data is some variable para
meter of the surrounding function. Then the possibility to pass these on as two different ar
rays avoids having to copy command and data bytes to a common buffer.

If you want to wait for an interrupt request on the IRQ line before sending data, use com
mand IOCTL_NSPI_WAITIRQ_SEND instead.

The DataDelay feature is not available in V1.x and V2.x.

33

NSPI Reference

Remarks

● In the split version, this function needs two arrays going in: the command bytes and
the data bytes to send. Therefore this call uses both data pointers of the
DeviceIoControl() as IN pointers, lpInBuffer and lpOutBuffer. This is a
little bit unusual, but works nonetheless.

● When using the DMA method, the number of bytes to send (command+data) is re
stricted to the value set in registry value DmaBufferSize, usually 4096 bytes. When
trying to send more data in one go, the driver will return ERROR_INVALID_PARA
METER without transmitting anything. Because command and data are sent as one
combined DMA transfer then, it is not possible to have a pause between command
and data phase. So any DataDelay value is ignored in this case.

Example 1

Send command bytes 0x12, 0x34, 0x56 and data bytes 0x01, 0x02, 0x03, 0x04, 0x05 to the
SPI device. Here we can combine command and data bytes in one array.

BYTE chCmdData[8] =
{

0x12, 0x34, 0x56, /* command */
0x01, 0x02, 0x03, 0x04, 0x05 /* data */

};

DeviceIoControl(hSpi, IOCTL_NSPI_SEND, chCmdData, sizeof(chCmdData),
 NULL, 0, NULL, NULL);

Listing 5: Example IOCTL_NSPI_SEND: One Array

Example 2

Function for sending command bytes 0x12, 0x34, 0x56 and some data given as function
parameter to the SPI device. To avoid having to copy the data bytes behind the command
bytes into a temporary array, it is better to use the 2-array version.

BYTE chCmd[3] =
{

0x12, 0x34, 0x56
};

void Send(BYTE *pData, DWORD dwDataLen)
{

DeviceIoControl(hSpi, IOCTL_NSPI_SEND, chCmd, sizeof(chCmd),
 pData, dwDataLen, NULL, NULL);

}

Listing 6: Example IOCTL_NSPI_SEND: Two Arrays

34

NSPI Reference

6.7 IOCTL_NSPI_RECEIVE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_RECEIVE

lpInBuffer.................................Pointer to command bytes; can be NULL if no command
is required

dwInBufferSize.........................Number of command bytes

lpOutBuffer...............................Pointer to the byte array where the received data bytes
will be stored

dwOutBufferSize......................Number of data bytes to receive

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sends the command bytes to the SPI device. Any bytes received during this
phase are discarded. Then it receives the given number of data bytes from the SPI device.
As the driver has to send dummy data while receiving, it will use the value of DummyByte for
this purpose which can be set in the registry or with IOCTL_NSPI_SET_DUMMYBYTE.

If a DataDelay is set either in the registry or with IOCTL_NSPI_SET_DATADELAY, a short
pause of this length is inserted between command and data phase. See Chapter 2.6 on
Page 7 for a description of the DataDelay feature.

If you want to wait for an interrupt request on the IRQ line before receiving data, use com
mand IOCTL_NSPI_WAITIRQ_RECEIVE instead.

The DataDelay feature is not available in V1.x and V2.x and the DummyByte is fixed to
0xFF.

Remark

When using the DMA method, the number of bytes to transfer (command+data) is restricted
to the value set in registry value DmaBufferSize, usually 4096 bytes. When trying to trans
fer more bytes in one go, the driver will return ERROR_INVALID_PARAMETER without trans
ferring anything. Because command and data are sent as one combined DMA transfer then,
it is not possible to have a pause between command and data phase. So any DataDelay
value is ignored in this case.

35

NSPI Reference

Example

Send command 0x98 0x76 to the device and receive 10 bytes.

BYTE chCmd[2] = {0x98, 0x76};
BYTE chData[10];

DeviceIoControl(hSpi, IOCTL_NSPI_RECEIVE, chCmd, sizeof(chCmd),
 chData, sizeof(chData), NULL, NULL);

Listing 7: Example IOCTL_NSPI_RECEIVE

36

NSPI Reference

6.8 IOCTL_NSPI_TRANSFER

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_TRANSFER

lpInBuffer.................................Pointer to command bytes and data bytes to send

dwInBufferSize.........................Number of command plus data bytes

lpOutBuffer...............................Pointer to the byte array where the received data bytes
will be stored

dwOutBufferSize......................Number of data bytes to receive

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command first sends the command bytes to the SPI device. The bytes received during
this phase are discarded. Then it sends the given data bytes to the device and at the same
time receives data bytes from the device.

The number of command bytes is determined as the difference of dwInBufferSize and
dwOutBufferSize.

If a DataDelay is set either in the registry or with IOCTL_NSPI_SET_DATADELAY, a short
pause of this length is inserted between command and data phase. See Chapter 2.6 on
Page 7 for a description of the DataDelay feature.

If you want to wait for an interrupt request on the IRQ line before transferring data, use com
mand IOCTL_NSPI_WAITIRQ_TRANSFER instead.

The DataDelay feature is not available in V1.x and V2.x.

Remarks

● As here both, the IN and the OUT array are used for different data, the data to send
must be appended to the command data. This may be a little inconvenient as com
mand bytes and data may need to be copied to a temporary array first. However
most cases using simultaneous send and receive transmissions allow direct exchan
ging of the data, so you can use IOCTL_NSPI_EXCHANGE instead.

37

NSPI Reference

● When using the DMA method, the number of bytes (command+data) is restricted to
the value set in registry value DmaBufferSize, usually 4096 bytes. When trying to
transfer more data in one go, the driver will immediately return without transmitting
anything. Because command and data are sent as one combined DMA transfer then,
it is not possible to have a pause between command and data phase. So any Data
Delay value is ignored in this case.

● When using the DMA method on the NetDCU8 or NetDCU10, this command is not al
lowed. These boards only support send-only and receive-only DMA transfers and this
command would be a combined send-and-receive transfer.

Example

Send command 0x55 0x66 and the four data bytes 0x01, 0x02, 0x03, 0x04 to the device and
receive four bytes in return.

BYTE chCmdSendData[6] =
{

0x55, 0x66, /* command */
0x01, 0x02, 0x03, 0x04 /* send data */

};
BYTE chReceiveData[4]; /* receive data */

DeviceIoControl(hSpi, IOCTL_NSPI_TRANSFER,
 chCmdSendData, sizeof(chCmdSendData),
 chReceiveData, sizeof(chReceiveData), NULL, NULL);

Listing 8: Example IOCTL_NSPI_TRANSFER

38

NSPI Reference

6.9 IOCTL_NSPI_EXCHANGE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_EXCHANGE

lpInBuffer.................................Pointer to command bytes

dwInBufferSize.........................Number of command bytes

lpOutBuffer...............................Pointer to the byte array with the data bytes to send and
where the received data bytes will be stored

dwOutBufferSize......................Number of bytes to send and receive

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command first sends the command bytes to the SPI device. The bytes received during
this phase are discarded. Then it sends the given data bytes to the device and at the same
time receives data bytes from the device. The received data bytes will replace byte after byte
the sent data. After return, the old data is completely overwritten with the new data.

If a DataDelay is set either in the registry or with IOCTL_NSPI_SET_DATADELAY, a short
pause of this length is inserted between command and data phase. See Chapter 2.6 on
Page 7 for a description of the DataDelay feature.

If you want to wait for an interrupt request on the IRQ line before exchanging data, use com
mand IOCTL_NSPI_WAITIRQ_EXCHANGE instead.

The DataDelay feature is not available in V1.x and V2.x.

Remarks

● This function needs one array going in, and a second array with data going in and
out. Therefore this call uses both data pointers of the DeviceIoControl() for
providing IN data, lpInBuffer and lpOutBuffer. This is a little bit unusual, but
works nonetheless.

● When using the DMA method, the number of bytes (command+data) is restricted to
the value set in registry value DmaBufferSize, usually 4096 bytes. When trying to
transfer more data in one go, the driver will immediately return without transmitting
anything. Because command and data are sent as one combined DMA transfer then,

39

NSPI Reference

it is not possible to have a pause between command and data phase. So any Data
Delay value is ignored in this case.

● When using the DMA method on the NetDCU8 or NetDCU10, this command is not al
lowed. These boards only support send-only and receive-only DMA transfers and this
command would be a combined send-and-receive transfer.

Example

Send the command 0x55 0x66 and the four data bytes 0x01, 0x02, 0x03, 0x04 to the device
and receive four bytes in return, replacing the four data bytes.

BYTE chCmd[] = {0x55, 0x66};
BYTE chSendReceiveData[] =
{

0x01, 0x02, 0x03, 0x04 /* initialise with send data */
};

DeviceIoControl(hSpi, IOCTL_NSPI_EXCHANGE, chCmd, sizeof(chCmd),
 chSendReceiveData, sizeof(chSendReceiveData),
 NULL, NULL);

/* Now array chSendReceiveData contains the received data */

Listing 9: Example IOCTL_NSPI_EXCHANGE

40

NSPI Reference

6.10 IOCTL_NSPI_WAITIRQ_SEND

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_WAITIRQ_SEND

lpInBuffer.................................Pointer to command bytes; can be NULL if no command
is required

dwInBufferSize.........................Number of command bytes

lpOutBuffer...............................Pointer to the data bytes to send; can be NULL if no data
is required

dwOutBufferSize......................Number of data bytes

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command first waits for an interrupt request on the IRQ pin of this device (=chip select).
Then it works exactly like IOCTL_NSPI_SEND, i.e. it sends the command bytes and then the
data bytes to the SPI device and all received bytes are discarded.

For a detailed description of the send function, its restrictions and possible parameter com
binations, see Page 33.

To be able to use this command, you have to configure a pin for the interrupt request. See
registry settings IrqPin in Chapter 4.3.10 on Page 17 and IrqCfg in Chapter 4.3.11 on
Page 17 respectively.

To discard any pending interrupts, use command IOCTL_NSPI_CLEAR_IRQ before calling
IOCTL_NSPI_WAITIRQ_SEND. This makes sure that the call reacts to the next interrupt re
quest that happens in the future and not to some interrupt request from the past.

The driver also honours the registry value IrqTimeout that can also be modified at runtime
with IOCTL_NSPI_SET_IRQTIMEOUT. This means if there happens no interrupt within this
timeout period, the driver gives up and returns with WAIT_TIMEOUT (in contrast to
ERROR_TIMEOUT that is returned if the call is blocked for other reasons).

If you just want to send data without waiting for an interrupt request first, consider to use
WriteFile() or IOCTL_NSPI_SEND instead.

This command is not available in V1.x and V2.x.

41

NSPI Reference

Example

After waiting for an interrupt request, send command bytes 0x12, 0x34, 0x56 and data bytes
0x01, 0x02, 0x03, 0x04, 0x05 to the SPI device. The interrupt must happen within the next
300 ms, any other blocking must not exceed 2 s.

DWORD dwIrqTimeout = 300;
DWORD dwGenTimeout = 2000;
DWORD dwError;
BYTE chCmd[] = {0x12, 0x34, 0x56};
BYTE chData[] = {0x01, 0x02, 0x03, 0x04, 0x05};

/* Set timeouts */
DeviceIoControl(hSpi, IOCTL_NSPI_SET_IRQTIMEOUT,
 &dwIrqTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);
DeviceIoControl(hSpi, IOCTL_NSPI_SET_GENTIMEOUT,
 &dwGenTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send command and data */
dwError = DeviceIoControl(hSpi, IOCTL_NSPI_WAITIRQ_SEND,
 chCmd, sizeof(chCmd),
 chData, sizeof(chData), NULL, NULL);

/* Handle timeout errors */
if (dwError == ERROR_TIMEOUT)
{

/* Handle general timeout */
}
else if (dwError == WAIT_TIMEOUT)
{

/* Handle interrupt timeout */
}

Listing 10: Example IOCTL_NSPI_WAITIRQ_SEND

42

NSPI Reference

6.11 IOCTL_NSPI_WAITIRQ_RECEIVE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_WAITIRQ_RECEIVE

lpInBuffer.................................Pointer to command bytes; can be NULL if no command
is required

dwInBufferSize.........................Number of command bytes

lpOutBuffer...............................Pointer to the byte array where the received data bytes
will be stored

dwOutBufferSize......................Number of data bytes to receive

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command first waits for an interrupt request on the IRQ pin of this device (=chip select).
Then it works exactly like IOCTL_NSPI_RECEIVE, i.e. it first sends the command bytes to
the SPI device. Any bytes received during this phase are discarded. Then it receives the
given number of data bytes from the SPI device. As the driver has to send dummy data while
receiving, it will use the value of DummyByte for this purpose which can be set in the registry
or with IOCTL_NSPI_SET_DUMMYBYTE.

For a detailed description of the receive function, its restrictions and possible parameter
combinations, see Page 35.

To be able to use this command, you have to configure a pin for the interrupt request. See
registry settings IrqPin in Chapter 4.3.10 on Page 17 and IrqCfg in Chapter 4.3.11 on
Page 17 respectively.

To discard any pending interrupts, use command IOCTL_NSPI_CLEAR_IRQ before calling
IOCTL_NSPI_WAITIRQ_RECEIVE. This makes sure that the call reacts to the next interrupt
request that happens in the future and not to some interrupt request from the past.

The driver also honours the registry value IrqTimeout that can also be modified at runtime
with IOCTL_NSPI_SET_IRQTIMEOUT. This means if there happens no interrupt within this
timeout period, the driver gives up and returns with WAIT_TIMEOUT (in contrast to
ERROR_TIMEOUT that is returned if the call is blocked for other reasons).

43

NSPI Reference

If you just want to receive data without waiting for an interrupt request first, consider to use
ReadFile() or IOCTL_NSPI_RECEIVE instead.

This command is not available in V1.x and V2.x.

Example

Wait for interrupt, then send command 0x98 0x76 to the device and receive 10 bytes. The in
terrupt must happen within the next 300 ms, any other blocking must not exceed 2 s.

DWORD dwIrqTimeout = 300;
DWORD dwGenTimeout = 2000;
DWORD dwError;
BYTE chCmd[] = {0x98, 0x76};
BYTE chData[10];

/* Set timeouts */
DeviceIoControl(hSpi, IOCTL_NSPI_SET_IRQTIMEOUT,
 &dwIrqTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);
DeviceIoControl(hSpi, IOCTL_NSPI_SET_GENTIMEOUT,
 &dwGenTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send command and receive data */
dwError = DeviceIoControl(hSpi, IOCTL_NSPI_WAITIRQ_RECEIVE,
 chCmd, sizeof(chCmd),
 chData, sizeof(chData), NULL, NULL);

/* Handle timeout errors */
if (dwError == ERROR_TIMEOUT)
{

/* Handle general timeout */
}
else if (dwError == WAIT_TIMEOUT)
{

/* Handle interrupt timeout */
}

Listing 11: Example IOCTL_NSPI_WAITIRQ_RECEIVE

44

NSPI Reference

6.12 IOCTL_NSPI_WAITIRQ_TRANSFER

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_WAITIRQ_TRANSFER

lpInBuffer.................................Pointer to command bytes and data bytes to send

dwInBufferSize.........................Number of command plus data bytes

lpOutBuffer...............................Pointer to the byte array where the received data bytes
will be stored

dwOutBufferSize......................Number of data bytes to receive

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command first waits for an interrupt request on the IRQ pin of this device (=chip select).
Then it works exactly like IOCTL_NSPI_TRANSFER, i.e. it sends the command bytes to the
SPI device. The bytes received during this phase are discarded. Then it sends the given
data bytes to the device and at the same time receives data bytes from the device.

The number of command bytes is determined as the difference of dwInBufferSize and
dwOutBufferSize. For a detailed description of the transfer function, its restrictions and
possible parameter combinations, see Page 37.

To be able to use this command, you have to configure a pin for the interrupt request. See
registry settings IrqPin in Chapter 4.3.10 on Page 17 and IrqCfg in Chapter 4.3.11 on
Page 17 respectively.

To discard any pending interrupts, use command IOCTL_NSPI_CLEAR_IRQ before calling
IOCTL_NSPI_WAITIRQ_TRANSFER. This makes sure that the call reacts to the next inter
rupt request that happens in the future and not to some interrupt request from the past.

The driver also honours the registry value IrqTimeout that can also be modified at runtime
with IOCTL_NSPI_SET_IRQTIMEOUT. This means if there happens no interrupt within this
timeout period, the driver gives up and returns with WAIT_TIMEOUT (in contrast to
ERROR_TIMEOUT that is returned if the call is blocked for other reasons).

If you just want to transfer data without waiting for an interrupt request first, consider to use
IOCTL_NSPI_TRANSFER instead.

This command is not available in V1.x and V2.x.

45

NSPI Reference

Example

Wait for interrupt, then send command 0x55 0x66 and the four data bytes 0x01, 0x02, 0x03,
0x04 to the device and receive four bytes in return. The interrupt must happen within the
next 300 ms, any other blocking must not exceed 2 s.

DWORD dwIrqTimeout = 300;
DWORD dwGenTimeout = 2000;
DWORD dwError;
BYTE chCmdSendData[6] =
{

0x55, 0x66, /* command */
0x01, 0x02, 0x03, 0x04 /* send data */

};
BYTE chReceiveData[4]; /* receive data */

/* Set timeouts */
DeviceIoControl(hSpi, IOCTL_NSPI_SET_IRQTIMEOUT,
 dwIrqTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);
DeviceIoControl(hSpi, IOCTL_NSPI_SET_GENTIMEOUT,
 dwGenTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send command, send and receive data */
dwError = DeviceIoControl(hSpi, IOCTL_NSPI_WAITIRQ_TRANSFER,
 chCmdSendData, sizeof(chCmdSendData),
 chReceiveData, sizeof(chReceiveData),
 NULL, NULL);

/* Handle timeout errors */
if (dwError == ERROR_TIMEOUT)
{

/* Handle general timeout */
}
else if (dwError == WAIT_TIMEOUT)
{

/* Handle interrupt timeout */
}

Listing 12: Example IOCTL_NSPI_WAITIRQ_TRANSFER

46

NSPI Reference

6.13 IOCTL_NSPI_WAITIRQ_EXCHANGE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_WAITIRQ_EXCHANGE

lpInBuffer.................................Pointer to command bytes

dwInBufferSize.........................Number of command bytes

lpOutBuffer...............................Pointer to the byte array with the data bytes to send and
where the received data bytes will be stored

dwOutBufferSize......................Number of bytes to send and receive

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command first waits for an interrupt request on the IRQ pin of this device (=chip select).
Then it works exactly like IOCTL_NSPI_EXCHANGE, i.e. it sends the command bytes to the
SPI device. The bytes received during this phase are discarded. Then it sends the given
data bytes to the device and at the same time receives data bytes from the device. The re
ceived data bytes will replace byte after byte the sent data. After return, the old data is com
pletely overwritten with the new data.

For a detailed description of the exchange function, its restrictions and possible parameter
combinations, see Page 39.

To be able to use this command, you have to configure a pin for the interrupt request. See
registry settings IrqPin in Chapter 4.3.10 on Page 17 and IrqCfg in Chapter 4.3.11 on
Page 17 respectively.

To discard any pending interrupts, use command IOCTL_NSPI_CLEAR_IRQ before calling
IOCTL_NSPI_WAITIRQ_EXCHANGE. This makes sure that the call reacts to the next inter
rupt request that happens in the future and not to some interrupt request from the past.

The driver also honours the registry value IrqTimeout that can also be modified at runtime
with IOCTL_NSPI_SET_IRQTIMEOUT. This means if there happens no interrupt within this
timeout period, the driver gives up and returns with WAIT_TIMEOUT (in contrast to
ERROR_TIMEOUT that is returned if the call is blocked for other reasons).

If you just want to exchange data without waiting for an interrupt request first, consider to
use IOCTL_NSPI_EXCHANGE instead.

This command is not available in V1.x and V2.x.

47

NSPI Reference

Example

Wait for interrupt, then send command 0x55 0x66 and the four data bytes 0x01, 0x02, 0x03,
0x04 to the device and receive four bytes in return, replacing the four data bytes. The inter
rupt must happen within the next 300 ms, any other blocking must not exceed 2 s.

DWORD dwIrqTimeout = 300;
DWORD dwGenTimeout = 2000;
DWORD dwError;
BYTE chCmd[] = {0x55, 0x66};
BYTE chSendReceiveData[] =
{

0x01, 0x02, 0x03, 0x04 /* initialise with send data */
};

/* Set timeouts */
DeviceIoControl(hSpi, IOCTL_NSPI_SET_IRQTIMEOUT,
 &dwIrqTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);
DeviceIoControl(hSpi, IOCTL_NSPI_SET_GENTIMEOUT,
 &dwGenTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send command, send and receive data */
dwError = DeviceIoControl(hSpi, IOCTL_NSPI_WAITIRQ_EXCHANGE,
 chCmd, sizeof(chCmd), chSendReceiveData,
 sizeof(chSendReceiveData), NULL, NULL);

/* Handle timeout errors */
if (dwError == ERROR_TIMEOUT)
{

/* Handle general timeout */
}
else if (dwError == WAIT_TIMEOUT)
{

/* Handle interrupt timeout */
}

/* Now chSendReceiveData contains the received data */

Listing 13: Example IOCTL_NSPI_WAITIRQ_EXCHANGE

48

NSPI Reference

6.14 IOCTL_NSPI_GET_CLOCKFREQ

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_CLOCKFREQ

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current clock frequency
dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current transfer data rate in Hz or Bit/s. The default value is
taken from registry entry ClockFreq. A new data rate value can be set with command
IOCTL_NSPI_SET_CLOCKFREQ.

This command is not available in driver V1.x.

Example

Transfer some data with double data rate, then return to previous rate.

DWORD dwOldFreq;
DWORD dwNewFreq;

/* Get current data rate */
DeviceIoControl(hSpi, IOCTL_NSPI_GET_CLOCKSPEED, NULL, 0,
 &dwOldFreq, sizeof(DWORD), NULL, NULL);

/* Set double data rate */
dwNewFreq = 2*dwOldFreq;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_CLOCKSPEED,
 &dwNewFreq, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

/* Return to previous data rate */
DeviceIoControl(hSpi, IOCTL_NSPI_SET_CLOCKSPEED,
 &dwOldFreq, sizeof(DWORD), NULL, 0, NULL, NULL);

Listing 14: Example IOCTL_NSPI_GET_CLOCKFREQ

49

NSPI Reference

6.15 IOCTL_NSPI_SET_CLOCKFREQ

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_CLOCKFREQ

lpInBuffer.................................Pointer to a DWORD with the new clock frequency
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new transfer data rate. The current data rate can always be determ
ined with command IOCTL_NSPI_GET_CLOCKFREQ.

This command IOCTL_NSPI_SET_CLOCKFREQ is not available in driver V1.x. There the
clock frequency can only be set via the registry and it is not possible to change it at runtime.

Example

Transfer some data with 400 kHz, then with 2 MHz.

DWORD dwClockFreq;

/* Set 400 kHz */
dwClockFreq = 400000;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_CLOCKSPEED,
 &dwClockFreq, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

/* Set 2 MHz */
dwClockFreq = 2000000;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_CLOCKSPEED,
 &dwClockFreq, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

Listing 15: Example IOCTL_NSPI_SET_CLOCKFREQ

50

NSPI Reference

6.16 IOCTL_NSPI_GET_MODE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_MODE

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current SPI mode
dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current transfer SPI mode, i.e. 0, 1, 2 or 3. A new mode can be
set with command IOCTL_NSPI_SET_MODE. The default value for the SPI mode is taken
from registry entry SPIMode. Please refer to 5 on Page 14 for a description of the SPI
modes.

This command is not available in driver V1.x.

Example

Get SPI mode and print description to stdout.

DWORD dwCurrentMode;

DeviceIoControl(hSpi, IOCTL_NSPI_GET_MODE, NULL, 0,
 &dwCurrentMode, sizeof(DWORD), NULL, NULL);

switch (dwCurrentMode)
{
 case 0: printf("Clock active high, latch on rising edge"); break;

 case 1: printf("Clock active high, latch on falling edge"); break;

 case 2: printf("Clock active low, latch on falling edge"); break;

 case 3: printf("Clock active low, latch on rising edge"); break;
}

Listing 16: Example IOCTL_NSPI_GET_MODE

51

NSPI Reference

6.17 IOCTL_NSPI_SET_MODE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_MODE

lpInBuffer.................................Pointer to a DWORD with the new SPI mode
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new SPI mode. The current SPI mode can always be determined with
command IOCTL_NSPI_GET_MODE. Please refer to 5 on Page 14 for a description of the
SPI modes.

This command is not available in driver V1.x. There the SPI mode can only be set via the re
gistry and it is not possible to change it at runtime.

Example

Transfer some data with SPI mode 0, then some data with SPI mode 3.

DWORD dwMode;

/* Set SPI mode 0 */
dwMode = 0;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_MODE,
 &dwMode, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

/* Set SPI mode 3 */
dwMode = 3;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_MODE,
 &dwMode, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

Listing 17: Example IOCTL_NSPI_SET_MODE

52

NSPI Reference

6.18 IOCTL_NSPI_GET_METHOD

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_METHOD

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current driver method
dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current transfer driver method, i.e. 0 for IRQ, 1 for Polling and 2
for DMA. A new driver method can be set with command IOCTL_NSPI_SET_METHOD. The
default value for the driver method is taken from registry entry DriverMethod. Please refer
to 6 on Page 15 for a description of the driver methods.

This command is not available in driver V1.x.

Example

Get the driver method and print description to stdout.

DWORD dwCurrentMethod;

DeviceIoControl(hSpi, IOCTL_NSPI_GET_METHOD, NULL, 0,
 &dwCurrentMethod, sizeof(DWORD), NULL, NULL);

switch (dwCurrentMethod)
{
 case 0: printf("IRQ"); break;

 case 1: printf("Polling"); break;

 case 2: printf("DMA"); break;
}

Listing 18: Example IOCTL_NSPI_GET_METHOD

53

NSPI Reference

6.19 IOCTL_NSPI_SET_METHOD

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_METHOD

lpInBuffer.................................Pointer to a DWORD with the new driver method
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new driver method. The current driver method can always be determ
ined with command IOCTL_NSPI_GET_METHOD. Please refer to 6 on Page 15 for a descrip
tion of the driver methods.

This command is not available in driver V1.x. There the driver method can only be set via
the registry and can not be modified at runtime.

Example

Transfer some data with IRQ, then some data with Polling.

DWORD dwMethod;

/* Set IRQ mode */
dwMethod = 0;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_METHOD,
 &dwMethod, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

/* Set Polling mode */
dwMethod = 1;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_METHOD,
 &dwMethod, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send some data */
WriteFile(hSpi, ...);

Listing 19: Example IOCTL_NSPI_SET_METHOD

54

NSPI Reference

6.20 IOCTL_NSPI_GET_DUMMYBYTE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_DUMMYBYTE

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current dummy byte
dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current dummy byte that is transferred on the MOSI line in case
of receive-only transmissions. A new dummy byte value can be set with command
IOCTL_NSPI_SET_DUMMYBYTE. The default value for the dummy byte is taken from registry
entry DummyByte.

This command is not available in driver V1.x and V2.x. There the dummy byte is always fix
the value 0xFF.

Example

Get the current dummy byte and print value to stdout.

DWORD dwCurrentDummyByte;

DeviceIoControl(hSpi, IOCTL_NSPI_GET_DUMMYBYTE, NULL, 0,
 &dwCurrentDummyByte, sizeof(DWORD), NULL, NULL);

printf("Current dummy byte is 0x%02x", dwCurrentDummyByte);

Listing 20: Example IOCTL_NSPI_GET_DUMMYBYTE

55

NSPI Reference

6.21 IOCTL_NSPI_SET_DUMMYBYTE

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_DUMMYBYTE

lpInBuffer.................................Pointer to a DWORD with the new dummy byte
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new dummy byte that is transferred on the MOSI line in case of re
ceive-only transmissions. The current dummy byte can always be determined with command
IOCTL_NSPI_GET_DUMMYBYTE.

This command is not available in driver V1.x or V2.x. There the dummy byte is always fix
the value 0xFF.

Example

Receive some data while sending 0x00, then read some data while sending 0xFF.

DWORD dwDummyByte;

/* Set dummy byte to 0x00 */
dwDummyByte = 0x00;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_DUMMYBYTE,
 &dwDummyByte, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Receive some data */
ReadFile(hSpi, ...);

/* Set dummy byte to 0xFF */
dwDummyByte = 0xFF;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_DUMMYBYTE,
 &dwDummyByte, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Receive some data */
ReadFile(hSpi, ...);

Listing 21: Example IOCTL_NSPI_SET_DUMMYBYTE

56

NSPI Reference

6.22 IOCTL_NSPI_GET_DATADELAY

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_DATADELAY

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current data delay (in ns)
dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current data delay, i.e. the delay that is inserted by the master
between command and data phase (see Chapter 2.6 on Page 7). A new data delay value
can be set with command IOCTL_NSPI_SET_DATADELAY. The default value for the data
delay is taken from registry entry DataDelay.

This command is not available in driver V1.x and V2.x. There the DataDelay is always
zero.

Example

Get the current data delay and print value to stdout.

DWORD dwCurrentDataDelay;

DeviceIoControl(hSpi, IOCTL_NSPI_GET_DATADELAY, NULL, 0,
 &dwCurrentDataDelay, sizeof(DWORD), NULL, NULL);

printf("Current data delay is %d ns", dwCurrentDataDelay);

Listing 22: Example IOCTL_NSPI_GET_DATADELAY

57

NSPI Reference

6.23 IOCTL_NSPI_SET_DATADELAY

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_DATADELAY

lpInBuffer.................................Pointer to a DWORD with the new data delay (in ns)
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new data delay value. This is a delay that is inserted by the driver
between command and data phase (see Chapter 2.6 on Page 7). The value is given in nano
seconds, reasonable values are 20000 (for 20 µs) and up. The current data delay can al
ways be determined with command IOCTL_NSPI_GET_DATADELAY.

This command is not available in driver V1.x and V2.x. There the DataDelay is always
zero.

Example

Function to send command with given data delay, then reset data delay back to 0.

void SendWithDelay(DWORD dwDataDelay, BYTE *pCmd, DWORD dwCmdLen,
 BYTE *pData, DWORD dwDataLen)
{

/* Set given data delay */
DeviceIoControl(hSpi, IOCTL_NSPI_SET_DATADELAY, &dwDataDelay,
 sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send command */
DeviceIoControl(hSpi, IOCTL_NSPI_SEND, pCmd, dwCmdLen,
 pData, dwDataLen, NULL, NULL);

/* Set data delay back to 0 */
dwDataDelay = 0;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_DATADELAY, &dwDataDelay
 sizeof(DWORD), NULL, 0, NULL, NULL);

}

Listing 23: Example IOCTL_NSPI_SET_DATADELAY

58

NSPI Reference

6.24 IOCTL_NSPI_GET_GENTIMEOUT

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_GENTIMEOUT

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current general timeout
value (in ms)

dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current general timeout. This is the time the driver waits in
blocking situations until it gives up and returns with ERROR_TIMEOUT. A new general timeout
value can be set with command IOCTL_NSPI_SET_GENTIMEOUT. The default value for the
general timeout is taken from registry entry GenTimeout. The special value 0xFFFFFFFF
means infinite.

This command is not available in driver V1.x and V2.x. There the timeout in blocking situ
ations was given by the program (different values in different places).

Example

Get the current general timeout and print value to stdout.

DWORD dwCurrentGenTimeout;

DeviceIoControl(hSpi, IOCTL_NSPI_GET_GENTIMEOUT, NULL, 0,
 &dwCurrentGenTimeout, sizeof(DWORD), NULL, NULL);

printf("Current general timeout is %d ms", dwCurrentGenTimeout);

Listing 24: Example IOCTL_NSPI_GET_GENTIMEOUT

59

NSPI Reference

6.25 IOCTL_NSPI_SET_GENTIMEOUT

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_GENTIMEOUT

lpInBuffer.................................Pointer to a DWORD with the new general timeout (in ms)
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new general timeout value. This is the time the driver waits in blocking
situations until it gives up and returns with ERROR_TIMEOUT. The value is given in micro
seconds. A value of 0xFFFFFFFF means wait infinitely. The current general timeout value
can always be determined with command IOCTL_NSPI_GET_GENTIMEOUT.

This command is not available in driver V1.x or V2.x. There the timeout in blocking situations
was given by the program (different values in different places).

Example

Allow send function to block for 5 s, then set general timeout to 1 s.

DWORD dwGenTimeout;

/* Set general timeout to 5s */
dwGenTimeout = 5000;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_GENTIMEOUT,
 &dwGenTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send something */
DeviceIoControl(hSpi, IOCTL_NSPI_SEND, ...);

/* Set general timeout back to 1s */
dwGenTimeout = 1000;
DeviceIoControl(hSpi, IOCTL_NSPI_SET_GENTIMEOUT,
 &dwGenTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

Listing 25: Example IOCTL_NSPI_SET_GENTIMEOUT

60

NSPI Reference

6.26 IOCTL_NSPI_GET_IRQTIMEOUT

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_GET_IRQTIMEOUT

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DWORD receiving the current interrupt timeout
value (in ms)

dwOutBufferSize......................sizeof(DWORD)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the current interrupt timeout. This is the time the driver waits in
WAITIRQ transmission commands for the interrupt to occur until it gives up and returns with
WAIT_TIMEOUT (as opposed to ERROR_TIMEOUT if the general timeout expires). A new in
terrupt timeout value can be set with command IOCTL_NSPI_SET_IRQTIMEOUT. The de
fault value for the interrupt timeout is taken from registry entry IrqTimeout. The special
value 0xFFFFFFFF means infinite.

This command is not available in driver V1.x and V2.x.

Example

Get the current interrupt timeout and print value to stdout.

DWORD dwCurrentIrqTimeout;

DeviceIoControl(hSpi, IOCTL_NSPI_GET_IRQTIMEOUT, NULL, 0,
 &dwCurrentIrqTimeout, sizeof(DWORD), NULL, NULL);

printf("Current interrupt timeout is %d ms", dwCurrentIrqTimeout);

Listing 26: Example IOCTL_NSPI_GET_IRQTIMEOUT

61

NSPI Reference

6.27 IOCTL_NSPI_SET_IRQTIMEOUT

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_SET_IRQTIMEOUT

lpInBuffer.................................Pointer to a DWORD with the new interrupt timeout (in ms)
dwInBufferSize.........................sizeof(DWORD)

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command sets a new interrupt timeout value. This is the time the driver waits in
WAITIRQ transmission commands for the interrupt to occur until it gives up and returns with
WAIT_TIMEOUT (as opposed to ERROR_TIMEOUT if the general timeout expires). The value
is given in microseconds. A value of 0xFFFFFFFF means wait infinitely. The current interrupt
timeout value can always be determined with command IOCTL_NSPI_GET_IRQTIMEOUT.

The interrupt can of course already happen before the call to the driver with the WAITIRQ
transmission command. In this case the WAITIRQ command will continue immediately. If this
behaviour is not what you want, then you can clear all pending interrupts with command
IOCTL_NSPI_CLEAR_IRQ.

This command is not available in driver V1.x or V2.x.

Example

Allow WAITIRQ send function to wait for interrupt for at most 300 ms.

DWORD dwIrqTimeout = 300;

DeviceIoControl(hSpi, IOCTL_NSPI_SET_IRQTIMEOUT,
 &dwIrqTimeout, sizeof(DWORD), NULL, 0, NULL, NULL);

/* Send something */
dwError = DeviceIoControl(hSpi, IOCTL_NSPI_WAITIRQ_SEND, ...);

Listing 27: Example IOCTL_NSPI_SET_IRQTIMEOUT

62

NSPI Reference

6.28 IOCTL_NSPI_CLEAR_IRQ

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_NSPI_CLEAR_IRQ

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Unused, set to NULL

dwOutBufferSize......................Unused, set to 0

lpReturned.................................Unused, set to NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

When calling a WAITIRQ transmission command, i.e. one of IOCTL_NSPI_WAITIRQ_SEND,
IOCTL_NSPI_WAITIRQ_RECEIVE, IOCTL_NSPI_WAITIRQ_TRANSFER, or IOCTL_NSPI
_WAITIRQ_EXCHANGE, the interrupt may already have happened before. By calling this
command immediately before the WAITIRQ transmission command, all pending WAITIRQ
interrupts for this SPI device (= chip select) are cleared. So the WAITIRQ transmission com
mand will only return if a new interrupt occurs after the call of IOCTL_NSPI_CLEAR_IRQ.

This command is not available in driver V1.x or V2.x.

Example

Make sure that IOCTL_NSPI_WAITIRQ_SEND waits for the next interrupt.

/* Clear any pending interrupts */
DeviceIoControl(hSpi, IOCTL_NSPI_CLEAR_IRQ,
 NULL, 0, NULL, 0, NULL, NULL);

/* Wait for IRQ, then send something */
dwError = DeviceIoControl(hSpi, IOCTL_NSPI_WAITIRQ_SEND, ...);

Listing 28: Example IOCTL_NSPI_CLEAR_IRQ

63

NSPI Reference

6.29 IOCTL_DRIVER_GETINFO

Parameters

hDevice.......................................Handle to already open device file
dwIoControlCode......................IOCTL_DRIVER_GETINFO

lpInBuffer.................................Unused, set to NULL

dwInBufferSize.........................Unused, set to 0

lpOutBuffer...............................Pointer to a DRIVER_INFO structure receiving the driver
version (see below)

dwOutBufferSize......................sizeof(DRIVER_INFO)

lpReturned.................................The referenced value will be set to dwOutBufferSize if
pointer is not NULL

lpOverlapped.............................Unused, set to NULL

Return

0..Error, see GetLastError() for details

!=0..Success

Description

This command retrieves the version information of the NSPI driver.

typedef struct tagDRIVER_INFO
{

WORD wVerMajor;
WORD wVerMinor;
DWORD dwTemp[15];

} DRIVER_INFO, *PDRIVER_INFO;

Entry dwTemp[] in this structure is reserved for future extensions and is currently unused.
Just ignore it.

Please note, as this command is also available for other F&S drivers, DRIVER_INFO and
IOCTL_DRIVER_GETINFO are defined in a separate header file fs_driverinfo.h, that
should be available in the newest SDK for your board.

This command is not available in NSPI V1.x. If the call fails, then the NSPI driver version is
V1.x. Otherwise the correct version information is returned in the DRIVER_INFO structure.

64

NSPI Reference

Example

Get the driver version and print it to stdout.

#include <fs_driverinfo.h>

...

DRIVER_INFO cInfo;

if (!DeviceIoControl(hSpi, IOCTL_DRIVER_GETINFO, NULL, 0,
 &cInfo, sizeof(cInfo), NULL, NULL))
{

cInfo.wVerMajor = 1; /* Command failed: this is V1.x */
cInfo.wVerMinor = 0;

}

printf("NSPI driver V%d.%d", cInfo.wVerMajor, cInfo.wVerMinor);

Listing 29: Example IOCTL_DRIVER_GETINFO

65

Sample Program

7 Sample Program
The following program communicates to an FM25CL64 FRAM device. This is a type of non-
volatile memory. Each transmission has to start with a command.

Command Parameter Description

MEM_READ 16-bit address Read data from address

MEM_WREN - Write enable

MEM_WRITE 16-bit address Write data to address

MEM_RDSR - Read status register

MEM_WRSR - Write status register

Table 18: Commands of FRAM FM25CL64

Before being able to write any data to the memory, it must first be unlocked with the
MEM_WREN command. After every completed write command, writing is automatically dis
abled again.

In addition, the memory can be completely protected to avoid any change at all. This protec
tion flag is part of a status register that can be read and written with the separate commands
MEM_RDSR and MEM_WRSR.

The sample program reads the first 100 bytes of the memory. Then it unprotects the
memory, writes some sample data starting at address 0 and protects the memory again. Fi
nally the first 100 bytes are read once more.

66

Sample Program

/**/
/*** File: nspi-example.c ***/
/*** Author: Hartmut Keller, (C) F&S 2006 ***/
/*** Description: NSPI communication with FM25CL64 FRAM ***/
/**/

#include "windows.h" /* BYTE, WORD, ... */
#include "nspiio.h" /* IOCTL_NSPI_* */

#define MEM_WRSR 0x01 /* Write Status Register */
#define MEM_WRITE 0x02 /* Write Memory Data */
#define MEM_READ 0x03 /* Read Memory Data */
#define MEM_RDSR 0x05 /* Read Status Register */
#define MEM_WREN 0x06 /* Set Write Enable Latch */

BYTE DEMODATA[]="Hello World!";
HANDLE hSpi;

/* Set or clear protection flag in the status register */
void Protect(BOOL bOn)
{

BYTE command;
BYTE sr;

command = MEM_WREN;
DeviceIoControl(hSpi, IOCTL_SPI_SEND, &command, 1,
 NULL, 0, NULL, NULL);

command = MEM_RDSR;
DeviceIoControl(hSpi, IOCTL_SPI_RECEIVE, &command, 1,
 &sr, 1, NULL, NULL);

if (bOn)
sr |= 0x0C; /* protect */

else
sr &= ~0x0C; /* unprotect */

command = MEM_WRSR;
DeviceIoControl(hSpi, IOCTL_SPI_SEND, &command, 1,
 &sr, 1, NULL, NULL);

}

/* Read wCount bytes from the memory, starting at wOffset */
void ReadMem(WORD wOffset, WORD wCount, BYTE *pData)
{

BYTE command[3];

command[0] = MEM_READ;
command[1] = wOffset / 256;
command[2] = wOffset % 256;
DeviceIoControl(hSpi, IOCTL_SPI_RECEIVE, command, 3,
 pData, wCount, NULL, NULL);

}

/* Write wCount bytes to the memory, starting at wOffset */
void WriteMem(WORD wOffset, WORD wCount, BYTE *pData)

67

Sample Program

{
BYTE command[3];

command[0] = MEM_WREN;
DeviceIoControl(hSpi, IOCTL_SPI_SEND, command, 1,
 NULL, 0, NULL, NULL);

command[0] = MEM_WRITE;
command[1] = wOffset / 256;
command[2] = wOffset % 256;
DeviceIoControl(hSpi, IOCTL_SPI_SEND, command, 3,
 pData, wCount, NULL, NULL);

}

/* Main program: read data then store new data */
int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrev,
 LPTSTR lpCmdLine, int nCmdShow)
{

BYTE Buffer[100];

/* Open the device file */
hSpi = CreateFile(TEXT("SPI1:"), GENERIC_READ | GENERIC_WRITE,
 0, NULL, OPEN_EXISTING,
 FILE_FLAG_WRITE_THROUGH, 0);

/* Read memory */
ReadMem(0, 100, Buffer);

/* Store new data */
Protect(FALSE);
WriteMem(0, strlen((PCHAR)DEMODATA)+1, DEMODATA);
Protect(TRUE);

/* Read back memory */
ReadMem(0, 100, Buffer);

/* Close device file and return */
CloseHandle(hSpi);

return 0;
}

Listing 30: Sample Program accessing FRAM FM25CL46

68

Header File nspiio.h

8 Header File nspiio.h
The following listing shows the contents of the header file nspiio.h. This file must be in
cluded in all applications that want to use the NSPI driver. It contains all IOCTL values re
quired to call the driver.

/***/
/*** _ _ _ _____ ____ _ _ ***/
/*** | \ | | | | | __ \ / ___/ | | | ***/
/*** | \ | | ___ _| |_| | \ | | | | | | ***/
/*** | \| |/ _ _ _| | | | | | | | | ***/
/*** | |\ | |/_/ | | | | | | | | | | | ***/
/*** | | \ | |__ | | | |__/ | |___| |__| | ***/
/*** |_| _|___\ _\ |_____/ __________/ ***/
/*** ***/
/***/
/*** ***/
/*** ***/
/*** N a t i v e S P I D e v i c e D r i v e r I n t e r f a c e ***/
/*** ***/
/*** ***/
/***/
/*** File: nspiio.h ***/
/*** Authors: Hartmut Keller ***/
/*** Created: 14.03.2005 ***/
/*** Modified: 21.09.2011 15:56:15 (HK) ***/
/*** ***/
/*** Description: ***/
/*** Include file for SPI IOCTLs. You have to include this file to use the ***/
/*** NSPI driver in your own applications. ***/
/*** ***/
/*** Modification History: ***/
/*** 07.04.2006 HK: Change from SPI to NSPI ***/
/*** 19.02.2009 HK: V2.x: Added new IOCTL commands: IOCTL_DRIVER_GETINFO, ***/
/*** IOCTL_NSPI_GET_CLOCKFREQ, IOCTL_NSPI_SET_CLOCKFREQ, ***/
/*** IOCTL_NSPI_GET_METHOD, IOCTL_NSPI_SET_METHOD, ***/
/*** IOCTL_NSPI_GET_MODE, IOCTL_NSPI_SET_MODE. ***/
/*** 21.09.2011 HK: V3.x: New IOCTL commands: IOCTL_NSPI_WAITIRQ_EXCHANGE, ***/
/*** IOCTL_NSPI_WAITIRQ_TRANSFER, IOCTL_NSPI_WAITIRQ_SEND, ***/
/*** IOCTL_NSPI_WAITIRQ_RECEIVE, IOCTL_NSPI_CLEAR_IRQ, ***/
/*** IOCTL_NSPI_GET_IRQTIMEOUT, IOCTL_NSPI_SET_IRQTIMEOUT, ***/
/*** IOCTL_NSPI_GET_GENTIMEOUT, IOCTL_NSPI_SET_GENTIMEOUT, ***/
/*** IOCTL_NSPI_GET_DATADELAY, IOCTL_NSPI_SET_DATADELAY, ***/
/*** IOCTL_NSPI_GET_DUMMYBYTE, IOCTL_NSPI_SET_DUMMYBYTE. ***/
/***/

/*---
 THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
 KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.

 Copyright (c) 2011 F&S Elektronik Systeme GmbH
---*/

#ifndef __NSPIIO_H__
#define __NSPIIO_H__

#include "WINIOCTL.h" /* CTL_CODE(), METHOD_BUFFERED,... */

/* -------------------- Exported Definitions ------------------------------- */

69

Header File nspiio.h

/* With each clock cycle, the SPI transfer sends one bit on the MOSI line and
 receives one bit on the MISO line. Therefore sending and receiving of data
 on SPI is done at the same time. After one byte is sent, also a byte is
 received. This allows the following transmissions:

 1. Send-only: the received bytes are meaningless and therefore discarded.
 --> IOCTL_NSPI_SEND

 2. Receive-only: the sent data bytes are ignored at the device, therefore
 don't matter. Usually the value 0xFF is used as dummy value.
 --> IOCTL_NSPI_RECEIVE

 3. Send and receive: both data directions carry meaningful data.

 3a. Independent transfer: the data bytes to send are taken from one
 place and the received data bytes are stored at a different place.
 --> IOCTL_NSPI_TRANSFER

 3b. Replacing transfer: the received data bytes are stored at the same
 loaction as the bytes to send, replacing them one after the other.
 --> IOCTL_NSPI_EXCHANGE

 Table of parameters for DeviceIoControl():

 Transfer type IN-data OUT-data before / after

 IOCTL_NSPI_SEND Command Send data / Send data
 IOCTL_NSPI_RECEIVE Command (unused) / Received data
 IOCTL_NSPI_TRANSFER Command & send data (unused) / Received data
 IOCTL_NSPI_EXCHANGE Command Send data / Received data

 Most SPI devices require some command bytes to determine what to do before
 transmitting the actual data. This is a send-only phase, i.e. the bytes
 received during this phase are discarded. If the device does not require
 command bytes, the command part may be left empty.

 When using IOCTL_NSPI_TRANSFER, the command size is determined by the
 difference of the IN-data and OUT-data array sizes. For example if 10 bytes
 go in and 8 bytes go out, the command size is 2 bytes.

 Some SPI devices require a short delay between command and data bytes. This
 delay can be configured starting with V3.0 of this driver. As it is
 usually only a short delay, it is given in nanoseconds and implemented as a
 busy-wait loop.

 Some SPI devices issue an interrupt when data is available to transfer. For
 these devices we have introduced new transfer controls in V3.0 that first
 wait for the occurance of an interrupt on a configurable I/O pin and only
 then start the SPI cycle:

 Transfer type IN-data OUT-data before / after

 IOCTL_NSPI_WAITIRQ_SEND Command Send data / Send data
 IOCTL_NSPI_WAITIRQ_RECEIVE Command (unused) / Received data
 IOCTL_NSPI_WAITIRQ_TRANSFER Command + Send data (unused) / Received data
 IOCTL_NSPI_WAITIRQ_EXCHANGE Command Send data / Received data

 Remark:
 When using IOCTL_NSPI_SEND or IOCTL_NSPI_WAITIRQ_SEND, you can either send
 the data as part of the command in the IN-array or as separate data in the
 OUT-array. This can make handling of data easier in some cases. However
 please note that a delay between command and data bytes can only be used
 when the data is provided in the OUT-array because otherwise the driver
 does not know how many bytes are command bytes and how many bytes are data
 bytes. */

/* New IOControlCode values */
#define FILE_DEVICE_NSPI 0x0000800A

70

Header File nspiio.h

/* Send command to SPI device. After an optional delay, send data to SPI
 device. Any data that is received during this time is discarded. */
#define IOCTL_NSPI_SEND \
 CTL_CODE(FILE_DEVICE_NSPI, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Send command to SPI device. Any data received during this phase is
 discarded. After an optional delay, send dummy bytes to SPI device while
 receiving data from the device at the same time. Store received data at
 given place. */
#define IOCTL_NSPI_RECEIVE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Send command to SPI device. Any data received during this phase is
 discarded. After an optional delay, send data to SPI device while receiving
 data from the device at the same time. Store received data at new place. */
#define IOCTL_NSPI_TRANSFER \
 CTL_CODE(FILE_DEVICE_NSPI, 0x802, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Send command to SPI device. Any data received during this phase is
 discarded. After an optional delay, send data to SPI device while receiving
 data from the device at the same time. Replace old sent data with the newly
 received data. */
#define IOCTL_NSPI_EXCHANGE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x803, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current clock frequency */
#define IOCTL_NSPI_GET_CLOCKFREQ \
 CTL_CODE(FILE_DEVICE_NSPI, 0x804, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set new clock frequency */
#define IOCTL_NSPI_SET_CLOCKFREQ \
 CTL_CODE(FILE_DEVICE_NSPI, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current SPI mode */
#define IOCTL_NSPI_GET_MODE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x806, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set new SPI mode */
#define IOCTL_NSPI_SET_MODE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x807, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current driver method */
#define IOCTL_NSPI_GET_METHOD \
 CTL_CODE(FILE_DEVICE_NSPI, 0x808, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set new driver method */
#define IOCTL_NSPI_SET_METHOD \
 CTL_CODE(FILE_DEVICE_NSPI, 0x809, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current dummy send byte */
#define IOCTL_NSPI_GET_DUMMYBYTE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x80A, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set new dummy send byte */
#define IOCTL_NSPI_SET_DUMMYBYTE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x80B, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current delay between command and data bytes (in ns!!!) */
#define IOCTL_NSPI_GET_DATADELAY \
 CTL_CODE(FILE_DEVICE_NSPI, 0x80C, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set new delay between command and data bytes (in ns!!!) */
#define IOCTL_NSPI_SET_DATADELAY \
 CTL_CODE(FILE_DEVICE_NSPI, 0x80D, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current general timeout (in ms) */
#define IOCTL_NSPI_GET_GENTIMEOUT \
 CTL_CODE(FILE_DEVICE_NSPI, 0x80E, METHOD_BUFFERED, FILE_ANY_ACCESS)

71

Header File nspiio.h

/* Set new general timeout (in ms) */
#define IOCTL_NSPI_SET_GENTIMEOUT \
 CTL_CODE(FILE_DEVICE_NSPI, 0x80F, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Wait for IRQ, then send command to SPI device. After an optional delay,
 send data to SPI device. Any data that is received during this time is
 discarded. */
#define IOCTL_NSPI_WAITIRQ_SEND \
 CTL_CODE(FILE_DEVICE_NSPI, 0x810, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Wait for IRQ, then send command to SPI device. Any data received during
 this phase is discarded. After an optional delay, send dummy bytes to SPI
 device while receiving data from the device at the same time. Store
 received data at given place. */
#define IOCTL_NSPI_WAITIRQ_RECEIVE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x811, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Wait for IRQ, then send command to SPI device. Any data received during
 this phase is discarded. After an optional delay, send data to SPI device
 while receiving data from the device at the same time. Store received data
 at new place. */
#define IOCTL_NSPI_WAITIRQ_TRANSFER \
 CTL_CODE(FILE_DEVICE_NSPI, 0x812, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Wait for IRQ, then send command to SPI device. Any data received during
 this phase is discarded. After an optional delay, send data to SPI device
 while receiving data from the device at the same time. Replace old sent
 data with the newly received data. */
#define IOCTL_NSPI_WAITIRQ_EXCHANGE \
 CTL_CODE(FILE_DEVICE_NSPI, 0x813, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Get current IRQ timeout (in ms) */
#define IOCTL_NSPI_GET_IRQTIMEOUT \
 CTL_CODE(FILE_DEVICE_NSPI, 0x814, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set new IRQ timeout (in ms) */
#define IOCTL_NSPI_SET_IRQTIMEOUT \
 CTL_CODE(FILE_DEVICE_NSPI, 0x815, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Clear any pending interrupt, i.e. the WAITIRQ functions will only be
 triggered by an interrupt that happens after this call here. */
#define IOCTL_NSPI_CLEAR_IRQ \
 CTL_CODE(FILE_DEVICE_NSPI, 0x816, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* Set/get device ID, ID=1 CS=SPI0_CS, ID=2 CS=Pin70*/
#define IOCTL_NSPI_ASSERT_CS \
 CTL_CODE(FILE_DEVICE_NSPI, 0x817, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define NSPI_CS_NORMAL 0
#define NSPI_CS_ASSERT 1
#define NSPI_CS_RELEASE 2

#define IOCTL_NSPI_GET_DEVICEID \
 CTL_CODE(FILE_DEVICE_NSPI, 0x818, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_NSPI_SET_DEVICEID \
 CTL_CODE(FILE_DEVICE_NSPI, 0x819, METHOD_BUFFERED, FILE_ANY_ACCESS)

/* In addition, you can use the IOCTL_DRIVER_GETINFO call to get the driver
 version. Please include <fs_driverinfo.h> to use this call. */

#endif /*!__NSPIIO_H__*/

Listing 31: Header File nspiio.h

72

Appendix

9 Appendix

Listings

Listing 1: Example CreateFile()...28

Listing 2: Example WriteFile()...29

Listing 3: Example ReadFile()...30

Listing 4: Example CloseHandle()...31

Listing 5: Example IOCTL_NSPI_SEND: One Array...35

Listing 6: Example IOCTL_NSPI_SEND: Two Arrays...35

Listing 7: Example IOCTL_NSPI_RECEIVE...37

Listing 8: Example IOCTL_NSPI_TRANSFER..39

Listing 9: Example IOCTL_NSPI_EXCHANGE...41

Listing 10: Example IOCTL_NSPI_WAITIRQ_SEND..43

Listing 11: Example IOCTL_NSPI_WAITIRQ_RECEIVE..45

Listing 12: Example IOCTL_NSPI_WAITIRQ_TRANSFER..47

Listing 13: Example IOCTL_NSPI_WAITIRQ_EXCHANGE..49

Listing 14: Example IOCTL_NSPI_GET_CLOCKFREQ..50

Listing 15: Example IOCTL_NSPI_SET_CLOCKFREQ..51

Listing 16: Example IOCTL_NSPI_GET_MODE...52

Listing 17: Example IOCTL_NSPI_SET_MODE..53

Listing 18: Example IOCTL_NSPI_GET_METHOD..54

Listing 19: Example IOCTL_NSPI_SET_METHOD...55

Listing 20: Example IOCTL_NSPI_GET_DUMMYBYTE...56

Listing 21: Example IOCTL_NSPI_SET_DUMMYBYTE..57

Listing 22: Example IOCTL_NSPI_GET_DATADELAY...58

Listing 23: Example IOCTL_NSPI_SET_DATADELAY...59

Listing 24: Example IOCTL_NSPI_GET_GENTIMEOUT..60

Listing 25: Example IOCTL_NSPI_SET_GENTIMEOUT..61

Listing 26: Example IOCTL_NSPI_GET_IRQTIMEOUT...62

Listing 27: Example IOCTL_NSPI_SET_IRQTIMEOUT..63

Listing 28: Example IOCTL_NSPI_CLEAR_IRQ...64

73

Appendix

Listing 29: Example IOCTL_DRIVER_GETINFO..66

Listing 30: Sample Program accessing FRAM FM25CL46...69

Listing 31: Header File nspiio.h...73

List of Figures

Figure 1: SPI Bus with Master and Slave..2

Figure 2: SPI Bus with Master and Three Slaves..2

Figure 3: Arbitrary Number of Bits in SPI Cycle..3

Figure 4: SPI Cycle with Command and Data Phase..3

Figure 5: Sample Set of Slave Commands...3

Figure 6: Register Based SPI Device..4

Figure 7: Different Transfer Directions..4

Figure 8: Change of Transfer Direction within an SPI Cycle...5

Figure 9: Improved Combined READ-WRITE Memory Command..5

Figure 10: SPI Modes...6

Figure 11: Data Delay...7

Figure 12: Interrupt Request Line...7

Figure 13: SPI Cycle after IRQ..7

Figure 14: One SPI Bus with Arbitrary Devices...8

Figure 15: Virtual Connection Between Devices and Slaves...22

Figure 16: SPI Latencies...23

List of Tables

Table 1: List of possible mutual interferences...10

Table 2: Pin Assignment of SPI Signals..11

Table 3: NSPI Registry Values..13

Table 4: NSPI Frequency Range..14

Table 5: SPI Mode (Polarity and Phase)...14

Table 6: NSPI Transfer Methods...15

Table 7: Supporter Driver-Methods...15

Table 8: Possible Interrupt Types..18

74

Appendix

Table 9: NSPI Registry Settings for the SPI Controller...19

Table 10: Thread Synchronisation Values...20

Table 11: Different Chip Selects...21

Table 12: Transfer times with short transmissions..24

Table 13: Transfer times with long transmissions...24

Table 14: SPI Transmission types...26

Table 15: IOCTL command codes for V1.x...32

Table 16: Additional IOCTL command codes for V2.x..33

Table 17: Additional IOCTL command codes for V3.x..33

Table 18: Commands of FRAM FM25CL64..67

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product spe
cifications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.

Products are not designed, intended, or authorised for use as components in systems inten
ded for applications intended to support or sustain life, or for any other application in which
the failure of the product from F&S Elektronik Systeme could create a situation where per
sonal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik
Systeme product for any such unintended or unauthorised application, the Buyer shall in
demnify and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affili
ates, and distributors harmless against all claims, costs, damages, expenses, and reason
able attorney fees arising out of, either directly or indirectly, any claim of personal injury or
death that may be associated with such unintended or unauthorised use, even if such claim
alleges that F&S Elektronik Systeme was negligent regarding the design or manufacture of
said product.

75

	1 Introduction
	2 The Serial Peripheral Interface
	2.1 Bus Topology
	2.2 SPI Commands
	2.3 Transfer Direction
	2.4 Protocol
	2.5 SPI Mode
	2.6 Data Delay
	2.7 Interrupt-Driven Communication
	2.8 Multiple Chip Selects

	3 The F&S Native SPI Driver
	3.1 Driver Versions
	3.2 Possible interface conflicts
	3.3 Pin Assignment

	4 Installing the NSPI Driver
	4.1 Installation with the CAB file
	4.2 Manual installation
	4.3 Registry Values in [HKLMDriversBuiltInSPIn]
	4.3.1 ClockFreq
	4.3.2 SPIMode
	4.3.3 DriverMethod
	4.3.4 Priority256
	4.3.5 SPIController
	4.3.6 DummyByte
	4.3.7 DataDelay
	4.3.8 CsPin
	4.3.9 GenTimeout
	4.3.10 IrqPin
	4.3.11 IrqCfg
	4.3.12 IrqTimeout
	4.3.13 Debug

	4.4 Registry Values in [HKLMDriversSPIControllerX]
	4.4.1 DmaBufferSize
	4.4.2 DmaTxChannel and DmaRxChannel
	4.4.3 DmaTriggerLevel
	4.4.4 IrqTriggerLevel
	4.4.5 ThreadSync

	4.5 Using Different Chip Selects
	4.6 Choosing the Driver Method

	5 The NSPI Driver in Applications
	6 NSPI Reference
	6.1 CreateFile()
	6.2 WriteFile()
	6.3 ReadFile()
	6.4 CloseHandle()
	6.5 DeviceIoControl()
	6.6 IOCTL_NSPI_SEND
	6.7 IOCTL_NSPI_RECEIVE
	6.8 IOCTL_NSPI_TRANSFER
	6.9 IOCTL_NSPI_EXCHANGE
	6.10 IOCTL_NSPI_WAITIRQ_SEND
	6.11 IOCTL_NSPI_WAITIRQ_RECEIVE
	6.12 IOCTL_NSPI_WAITIRQ_TRANSFER
	6.13 IOCTL_NSPI_WAITIRQ_EXCHANGE
	6.14 IOCTL_NSPI_GET_CLOCKFREQ
	6.15 IOCTL_NSPI_SET_CLOCKFREQ
	6.16 IOCTL_NSPI_GET_MODE
	6.17 IOCTL_NSPI_SET_MODE
	6.18 IOCTL_NSPI_GET_METHOD
	6.19 IOCTL_NSPI_SET_METHOD
	6.20 IOCTL_NSPI_GET_DUMMYBYTE
	6.21 IOCTL_NSPI_SET_DUMMYBYTE
	6.22 IOCTL_NSPI_GET_DATADELAY
	6.23 IOCTL_NSPI_SET_DATADELAY
	6.24 IOCTL_NSPI_GET_GENTIMEOUT
	6.25 IOCTL_NSPI_SET_GENTIMEOUT
	6.26 IOCTL_NSPI_GET_IRQTIMEOUT
	6.27 IOCTL_NSPI_SET_IRQTIMEOUT
	6.28 IOCTL_NSPI_CLEAR_IRQ
	6.29 IOCTL_DRIVER_GETINFO

	7 Sample Program
	8 Header File nspiio.h
	9 Appendix
	Listings
	List of Figures
	List of Tables
	Important Notice

