
FreeRTOS on FSiMX6SX Boards

Manual on how to use/configuring the software

Version 3.1
(2019-12-20)

© F&S Elektronik Systeme GmbH
Untere Waldplätze 23

D-70569 Stuttgart
Germany

Phone: +49(0)711-123722-0
Fax: +49(0)711-123722-99

About This Document

This document describes how to configure the Linux kernel, the device tree and the board to
use it with FreeRTOS and its demo applications provided. The software is configured for the
efusA9X, PicoCoreMX6SX and PicoCOMA9X from F&S under Linux.

Remark

The version number on the title page of this document is the version of the document. It is
not related to the version number of any software release! The latest version of this docu-
ment can always be found at http://www.fs-net.de.

How To Print This Document

This document is designed to be printed double-sided (front and back) on A4 paper. If you
want to read it with a PDF reader program, you should use a two-page layout where the title
page is an extra single page. The settings are correct if the page numbers are at the outside
of the pages, even pages on the left and odd pages on the right side. If it is reversed, then
the title page is handled wrongly and is part of the first double-page instead of a single page.

Typographical Conventions

We use different fonts and highlighting to emphasize the context of special terms:

File names

Menu entries

Board input/output

Program code

PC input/output

Listings

Generic input/output

Variables

8 9

Titlepage

http://www.fs-net.de/

4 FreeRTOS on FSiMX6SX Boards

History

Date V Platform A,M,R Chapter Description Au

2017-03-16 0.10 All A - Title and “About this document” part created TC

2017-03-22 0.20 All A, M 1, 2, 3, 4 Modified title page (removed logos), Added Introduction,

Added information on Installation, Added Configuration on U-
Boot

TC

2017-03-23 0.30 All A, M 4, 5, 7, 8 Added Modifying Device Tree chapter, Added FreeRTOS exam-
ples chapter, Added General Modifications chapter, Modified
Appendix

TC

2017-03-23 0.40 All A, M 6 Changed flexcan_network_epit subchapter, Added Description
for gpio_imx

TC

2017-03-24 0.50 All A, M 3, 5, 7 Explicit mentioning of armgcc download link, Changed download
link for FreeRTOS, Added legal information, Claryfied path for
examples

TC

2017-03-27 0.60 All M 4, 7 Added information on enable_m4() to U-Boot modifying section,
Changed information on ecspi examples

TC

2017-03-28 0.70 All A, M 4, 7 Added information on changes in U-Boot regarding dram alloca-
tion, Changed information on rpmsg examples

TC

2017-03-30 0.80 All A 5 Added information header regarding RPMsg TC

2017-04-03 0.90 All M 5, 7 Changed “modifications made” section for rpmsg examples,
modified attention header to represent current state of develop-
ment for RPMsg on boards with less than 1 GB RAM.

TC

2017-04-10 0.91 All A, M 5, 7 Added subchapters to chapter 5.6 to clearify situation on
RPMsg, changed “modifications made” part in RPMsg examples
in chapter 8

TC

2017-04-12 0.95 All A 7 Added more information in “changes needed” for the RPMsg
pingpong examples

TC

2017-04-19 1.00 All A, M 2, 3, 4, 7 Changed name for define in subchapter “Protecting modules”,
Added new description for i2c examples from NXP, Added own
examples, changed some naming conventions for paths, Added
attention header for GPIOs

TC

2017-04-21 1.10 All M 7 Changed command for booting m4, Changed attention header in
chapter 3 regarding the current state of development

TC

2017-04-25 1.20 All A, M - Modified title and “About this Document” to reflect changes on
PicoCOMA9X

TC

2017-05-05 1.30 All A, M 2, 3, 4, 5,
6, 7

Changed structure of pin assignments chapter; moved the tables
from chapter 6 to 2 and modified their content, changed reffer-
ences to tables in chapter 6, mentioned picocoma9x.dts addi-
tionally, Added “Known Issues” section to appendix, added
information about interfering audio chip and RPMsg

TC

2017-05-08 1.35 All M 4, 5 Changed “Changes in gpio_pins.[ch]” to reflect newes develop-
ment regarding the configure_gpio_pin() function

TC

2017-05-10 1.40 All A, M 6 Added subchapter about resetting Cortex-M4, modified infor-
mation about i2c demo

TC

2017-05-30 1.41 All M 4 Fixed typo in path to file TC

2017-05-31 1.50 All A, M 5, 6, 7 Changed information on RPMsg VRING allocation addresses to
reflect recent changes in the build system, added chapter about
new build process, Moved FreeRTOS examples from chapter 6
to 7

TC

2017-06-07 1.60 All A, M 2, 6 Added title to pin tables to clarify the board name, modified
information regarding build/make/install and clean

TC

2017-06-20 1.61 All M 2 Fixed wrong interface for efusa9x GPIOs TC

2017-06-23 1.65 All A, M 1, 7 Added figures and an informational text about time measure-
ment examples provided by F&S

TC

2017-06-29 1.66 All A 1 Added figure for performance scaling govenor,

added result text at the end of chapter 1

TC

2017-07-03 1.67 All M 1 Modified screenshots to a more unified measuring scale TC

 FreeRTOS on FSiMX6SX Boards 5

2017-07-05 1.68 All M 1 Swapped images; Trigger set on Input; Input signal is upper one
while output is on the lower part of the images

TC

2017-07-06 1.69 All M 1 Fixed minor spelling mistakes TC

2017-07-10 1.70 All A, M 1 Removed powersaving figures, added another set of figures TC

2017-07-11 1.71 All M 1 Modified Screenshots: set legend to the left corner, resized
images

TC

2017-07-17 1.72 All M 5, 6 Added information on changes made to board.h,

added more details in building with prepare.sh

TC

2017-07-21 1.73 All M 4 Modified chapter 4.1 to reflect current state of development,

added new subchapter 4.2 for bootaux usage

TC

2017-07-27 1.74 All M 6 Merged 6.3 with 6.2 TC

2017-08-03 1.75 All A 7 Added chapter on custom board creation TC

2017-08-04 1.80 All A 2, 4, 5, 8 Added subsection about ADC Pins on I2C-Ext. added subsec-
tion regarding bootaux, modified subsection about board.h re-
garding BOARD_I2C_MODULE_ADDR, added hint about build-
ing examples, changed the names for mutliple demos (F&S)

TC

2017-08-10 1.81 All M 2 Fixed wrong gpio for efusa9x TC

2017-08-21 1.82 All A, M 8 Inserted attention header for RPMsg enabling in device tree,

shortened ocram address, removed unimplemented demo

TC

2017-08-22 1.83 All M 8 Changed some parts inside chapter 8, removed outdated sub-
chapter about resetting Cortex-M4

TC

2017-08-23 1.84 All M 2, 8 Moved remark about unported examples to chapter 8, gpioSpi-
ACs1 is the default LED for efusa9x now, made those pesky
references working again

TC

2017-08-25 1.85 All A, R 8 Added subchapter about fs_adc_i2c_rpmsg_demo, removed
entry in ADC table for external reference voltage

TC

2017-08-30 1.86 All M,R 4, 5, 6, 8 Changed subchapter about enabling RPMsg node, removed
subchapter VRING allocation addresses, added/changed infor-
mation about protecting modules , fixed attentipn header regard-
ing location of BSP

TC

2017-08-31 1.87 All M 3 Changed path for FreeRTOS BSP TC

2019-12-20 1.88 All M 4,6,8 Fixed minor spelling mistakes. Reworked
fs_adc_i2c_rpmsg_demo

PG

2017-09-19 1.88 All M 8 Fixed defines in blinking_imx example PG

2017-09-22 1.88 All M 8 Added rpmsg driver workaround PG

2017-09-26 1.88 All M 4 Changed description of SUPPOR_M4 define PG

2017-10-04 1.88 All M 2.4 Changed I2C Pins to I2C3/I2CB PG

2017-10-10 1.88 All A 1 Added RPMsg measurements PG

2017-10-11 1.88 All M 2 Reworked GIO Pin assignment PG

2017-10-17 1.88 All A 1 Added FreeRTOS form diff. Memory regions PG

2017-10-17 1.88 All M 8.2.2 Changed example back to normal OCRAM PG

2017-10-17 1.88 All A 1 Added FreeRTOS form diff. Memory regions PG

2018-01-10 2.0 All Release version 2.0 PG

2018-03-27 2.1 All A,M 8.2.5 Add hello_world_split example, improve misspelling PJ

2019-01-23 3.0 All M All

Reworked freertos-SDK, splitted documentation into 2 separate
files. Added pin_mux-tables from extern excel file. Added sup-
port for picocoremx6sx PG

2019-12-20 3.1 All M M Restructure of the document PJ

V Version

A,M,R Added, Modified, Removed

Au Author

6 FreeRTOS on FSiMX6SX Boards

 FreeRTOS on FSiMX6SX Boards 7

Table of Contents

1 Pin Assignment 10

1.1 efusA9X ... 10

1.1.1 GPIO ... 10

1.1.2 FLEXCAN .. 10

1.1.3 ECSPI ... 10

1.1.4 I2C .. 10

1.2 PicoCOMA9X .. 11

1.2.1 GPIOs ... 11

1.2.2 FLEXCAN .. 11

1.2.3 ECSPI ... 11

1.2.4 I2C .. 11

1.3 PicoCoreMX6SX ... 12

1.3.1 GPIOs ... 12

1.3.2 FLEXCAN .. 12

1.3.3 ECSPI ... 12

1.3.4 I2C .. 12

1.4 I2C-Extension-Board ... 13

1.4.1 I2C .. 13

1.4.2 ADC .. 13

2 Different kind of memory regions 14

3 Installation 18

3.1 Installation of the GCC embedded toolchain .. 18

3.2 Download Source Code ... 18

3.3 Release Content .. 20

3.4 Unpacking the Source Code .. 22

4 Description of the FreeRTOS examples directory structure 23

4.1.1 demo_apps ... 23

4.1.2 driver_examples .. 23

4.1.3 multicore_examples ... 23

4.1.4 board_specific_files ... 23

8 FreeRTOS on FSiMX6SX Boards

5 Configuration for Cortex-M4 usage 24

5.1 Changes regarding official U-Boot ... 24

5.2 Using bootaux ... 24

5.3 Modifying the Linux Device Tree.. 25

6 General Modifications on FreeRTOS examples 26

6.1 Changes to the clock handling ... 26

6.2 Changes in board.c ... 26

6.3 Changes in board.h ... 26

6.4 Changes in gpio_pins.c ... 27

6.5 Changes in gpio_pins.h ... 27

6.6 Changes in pin_mux.c ... 27

6.7 Changes in ccm_imx6sx.h ... 27

7 Compiling the examples 28

7.1 Prepare.sh ... 28

7.2 Make ... 29

8 Adding custom boards 30

9 FreeRTOS examples 31

9.1 General build and run information .. 31

9.2 demo_apps ... 32

9.2.1 hello_world .. 32

9.2.2 hello_world_ocram .. 33

9.2.3 hello_world_ddr ... 34

9.2.4 hello_world_qspi .. 35

9.2.5 hello_world_split .. 36

9.2.6 blinking_imx_demo .. 37

9.2.7 can_wakeup .. 39

9.2.8 fs_adc_i2c_rpmsg_demo... 41

9.2.9 fs_i2c_extension_board_demo .. 44

9.2.10 periodic_wfi_tcm .. 47

9.2.11 pingpong_bm... 48

9.2.12 pingpong_freertos ... 49

9.2.13 str_echo_bm.. 50

 FreeRTOS on FSiMX6SX Boards 9

9.2.14 str_echo_freertos .. 51

9.2.15 sema4_demo ... 52

9.2.16 sensor_demo ... 52

9.3 driver_examples .. 53

9.3.1 adc_imx6sx (efusa9x only) .. 53

9.3.2 ecspi_interrupt ... 54

9.3.3 ecspi_polling.. 57

9.3.4 epit .. 58

9.3.5 flexcan_loopback_epit ... 59

9.3.6 flexcan_network_epit ... 60

9.3.7 gpio_imx .. 62

9.3.8 i2c_interrupt_extension_board_imx6sx.. 64

9.3.9 i2c_polling_extension_board_imx6sx .. 66

9.3.10 i2c_interrupt_sensor_imx6sx ... 67

9.3.11 i2c_polling_sensor_imx6sx .. 68

9.3.12 uart_polling .. 69

9.3.13 uart_interrupt ... 70

9.3.14 wdog_imx .. 71

10 Appendix 72

List of Figures ... 72

List of Tables ... 72

Known Issues .. 72

Third Party Agreement from Real Time Engineers Ltd. ... 73

Important Notice .. 74

Pin Assignment

10 FreeRTOS on FSiMX6SX Boards

1 Pin Assignment

In the following subchapters you can find an overview which pins are used for each Board.
The examples itself also contains the necessary pins.

1.1 efusA9X

1.1.1 GPIO

Set as Function Device GPIO
efusA9X Rev

1.2X
efus-SINTF Rev

1.30

KEY I2C_B_IRQ I2C3_IRQn GPIO7_IO01 J4_86 J22_48

LED, BLINK PWM_A PWM5 GPIO3_IO24 J4_25 J22_32

1.1.2 FLEXCAN

Function Device
efusA9X Rev

1.2X
Function efus-SINTF Rev 1.30

CAN_B_TX FLEXCAN2 J4_35 CAN_B_H J22_55

CAN_B_RX FLEXCAN2 J4_37 CAN_B_L J22_56

1.1.3 ECSPI

Function Device efusA9X Rev 1.2X efus-SINTF Rev 1.30

SPI_B_MISO SPI1 J4_50 J22_23

SPI_B_MOSI SPI1 J4_52 J22_24

SPI_B_CLK SPI1 J4_54 J22_25

SPI_B_CS1 SPI1 J4_56 J22_26

1.1.4 I2C

Function Device efusA9X Rev 1.2X efus-SINTF Rev 1.30

I2C_B_SCL I2C3 J4_84 J22_46

I2C_B_SDA I2C3 J4_82 J22_45

Pin Assignment

 FreeRTOS on FSiMX6SX Boards 11

1.2 PicoCOMA9X

1.2.1 GPIOs

Set as Function Device GPIO
PicoCOMA9X

Rev 1.10
PC2-SINTF PCOMnet

KEY SPI_MISO SPI1 GPIO2_IO11 J2_26 J10_3 J3_3

LED, BLINK SPI_MOSI SPI1 GPIO2_IO15 J2_29 J10_6 J3_6

1.2.2 FLEXCAN

Function Device
PicoCOMA9X

Rev 1.10
Function PC2-SINTF PCOMnet

CAN_A_TX FLEXCAN1 J2_30 CANH J10_25 J3_13

CAN_A_RX FLEXCAN1 J2_31 CANL J10_26 J3_14

1.2.3 ECSPI

Function Device PicoCOMA9X Rev 1.10 PC2-SINTF PCOMnet

SPI_MISO SPI1 J2_26 J10_3 J3_3

SPI_MOSI SPI1 J2_29 J10_6 J3_6

SPI_CLK SPI1 J2_28 J10_5 J3_5

SPI_CS0 SPI1 J2_27 J10_4 J3_4

1.2.4 I2C

Function Device PicoCOMA9X Rev 1.10 PC2-SINTF PCOMnet

I2C_A_SCL I2C4 J2_33 J10_10 J3_10

I2C_A_SDA I2C4 J2_32 J10_9 J3_9

Pin Assignment

12 FreeRTOS on FSiMX6SX Boards

1.3 PicoCoreMX6SX

1.3.1 GPIOs

Set as Function Device GPIO
PicoCoreMX6SX

Rev 1.10
PCoreBBRGB

Rev 1.20

KEY GPIO4_25 GPIO GPIO4_IO25 J1_26 J10_4

LED, BLINK GPIO4_26 GPIO GPIO4_IO26 J1_24 J10_3

1.3.2 FLEXCAN

Function Device PicoCoreMX6SX Rev 1.10 Function PCoreBBRGB Rec 1.20

CAN_A_TX FLEXCAN1 J1_12 CAN_1_H J6_4

CAN_A_RX FLEXCAN1 J1_10 CAN_1_L J6_3

1.3.3 ECSPI

Function Device PicoCoreMX6SX Rev 1.20 PCoreBBRGB Rec 1.20

SPI_A_MISO ECSPI5 J1_16 J10_17

SPI_A_MOSI ECSPI5 J1_18 J10_16

SPI_A_CLK ECSPI5 J1_20 J10_12

SPI_A_SS0 ECSPI5 J1_14 J10_14

1.3.4 I2C

Function Device PicoCoreMX6SX Rev 1.20 PCoreBBRGB Rec 1.20

I2C_A_SCL I2C4 J1_21 n.c.

I2C_A_SDA I2C4 J1_23 n.c.

Pin Assignment

 FreeRTOS on FSiMX6SX Boards 13

1.4 I2C-Extension-Board

1.4.1 I2C

The pin assignment for I2C requires the jumper JP1 / JP2 / JP3 / JP5 are set
(NetDCU/PicoMOD).

Name Connector

I2C_SCL J1_11

I2C_SDA J1_10

1.4.2 ADC

Name Connector

CH0 J2_17

COM J2_25

Different kind of memory regions

14 FreeRTOS on FSiMX6SX Boards

2 Different kind of memory regions

The Cortex-M4 code can be executed from different memory regions, as demonstrated in the

“hello_world_” examples. On the efusA9X, PicoCoreMX6SX and the PicoCOMA9X it

supports 3 different kind of memory chips: TMC, OCRAM and DRAM (QSPI is not supported
on these boards).

In most cases the on-chip TCM (Tightly-Coupled-Memory) is used, which is the fastest and
safest way to run Cortex-M4 applications, because only the Cortex-M4 has access to it and
therefor it needs no further protection. Also using the TCM may help meeting possible real-
time requirements, because an access to a different memory chip may be delayed if the bus
is currently used by the Cortex-A9.

But TCM is restricted to 32 KB Instructions and 32 KB data. If your application is too big you
might have to move it to another memory chip, which requires further considerations.

The Cortex-M4 implements a modified Harvard memory architecture, meaning that instruc-
tion and data fetches are made over separated bus port if accessed with different address
ranges. Instructions should only be placed in the address range from 0x00000000 to
0x1FFFFFFF whereas data should be placed from 0x20000000 to 0xFFFFFFFF. This allows
parallel fetching instruction and data.

The TCM is separated into a 32 KB TCML for instruction and a 32 KB TCMH for data, which
reflects the Harvard architecture of the Cortex-M4. If you want to place you code in a differ-
ent memory region you will have to consider this separation by using the right addresses for
instructions and data (see table below).

It is possible to place instructions into the data address range. But then the Cortex-M4 needs
twice as much cycles to fetch an instruction.

Different kind of memory regions

 FreeRTOS on FSiMX6SX Boards 15

Memory A9 Address M4 Address Size (Type)

DRAM 0x80000000 0x80000000 1.5 GB (Data)

DRAM aliased 0x80000000 0x10000000 256 MB (Instruction)

OCRAM 0x00900000 0x20900000 128 KB (64 KB) (Data)

OCRAM aliased 0x00900000 0x00900000 128 KB (64 KB)
(Instructions)

TCMH 0x00800000 0x20000000 32 KB (Data)

TCML 0x007F8000 0x1FFF8000 32 KB (Instructions)

Table 1: A9, M4 Memory map

Also you will have to protect the memory regions used by the Cortex-M4 against access form
the Cortex-A9. On the M4 side this is done by the RDC (Remote Domain Controller), which
will block any access from Cortex-A9, resulting in a Linux kernel panic. To prevent this the
memory regions used by the Cortex-M4 need to be excluded from the memory map of the
Cortex-A9.

This can be done by setting the U-Boot environment variable:

#setenv reserved_ram_size 0x100000

This will reserve the last 1MB1 of the first 256MB of the DRAM, which corresponds to the
aliased DRAM for instructions of the Cortex-M4. The addresses to access this area are:

 0x1ff0_0000 to 0x2000_0000 for instructions

 0x8ff0_0000 to 0x9000_0000 for data

You can change the position of the reserved memory area by setting the the U-Boot envi-
ronment variables

#setenv reserved_ram_base 0x…

#setenv reserved_ram_end 0x…

 Setting base and size will reserve you $base to $base+$size

 Setting end and size will reserve you $end-$size to $end

1 Right now the U-Boot always rounds up to the next MB. So there will be 1MB reserved by default

Different kind of memory regions

16 FreeRTOS on FSiMX6SX Boards

 Setting base and end will reserve you $base to $end. The size-variable will be ig-
nored.

 Setting just base ore just end is invalid. Nothing will be reserved.

The first 64 MB of the DRAM are reserved for the Linux kernel. If you try to place your re-
served memory area there or behind the maximum available ram, it will be cropped.

Also keep in mind that placing the Corex-M4 instruction code behind the first 256 MB, will
result in slower code execution and may cause other problems.

If you do not want to reserve any memory at all you can set all the reserved_ram_*

environment variables to 0.

Attention

If you are starting an M4-DRAM example from the U-Boot, make sure that you don’t override
it by loading anything big into the DRAM, afterwards.

You can set the $loadaddr environment variable behind the M4-code area to load big files.

RPMsg

By default the U-Boot will reserve 64 KB at the end of your reserved memory area for the
RPMsg vring buffers. If you change the location of you reserved memory area you will have
to run the prepare.sh script again and set the new end address of your reserved memory
area.

You will have to make sure, that your M4 program does not use these last 64KB if it runs
from the DRAM.

If you do not reserve any DRAM memory you will have to disable RPMsg in you device tree.

Also you will have to activate the comment at the beginning of your efusa9x.dts, pico-
coma9x.dts or picocoremx6sx.dts file. It will apply the following changes:

OCRAM

Adds:

&ocram {

 reg = <0x00901000 0xf000>;

}

This will split the OCRAM so that only the lower 60 KB will be used by Linux.

4KB will be needed for the low power examples and are reserved in the &clks node:

fsl,shared-mem-addr = <0x91F000>;

fsl,shared-mem-size = <0x1000>;

The rest can be used by the Cortex_M4

Different kind of memory regions

 FreeRTOS on FSiMX6SX Boards 17

DRAM
The last 64 KB of your DRAM will be used for RPMsg:

&rpmsg {

 vdev-nums = <1>;

 /* This will be overitten by the U-Boot */

 reg = <0xBFFF0000 0x10000>;

 status = "okay";

};

Changes needed in the FreeRTOS package

If you want to run a Cortex-M4 application from a different memory type, go to your applica-

tions CmakeLists.txt file:

examples/fsimx6sx/demo_apps/YOUR_APPLICATION/armgcc/CMakeLists.txt

And change the linker file to your required memory type:

MCIMX6X_M4_{tcm/ocram/ddr}.ld

If you want to change the actual addresses, go to the linker file:

platform/devices/MCIMX6X/linker/gcc/MCIMX6X_M4_XXX.ld

and change these hard-coded addresses:

/* Specify the memory areas */

MEMORY

{

 m_interrupts (RX) : ORIGIN = 0x1ff00000, LENGTH = 0x00000240

 m_text (RX) : ORIGIN = 0x1ff00240, LENGTH = 0x00007DC0

 m_data (RW) : ORIGIN = 0x8ff08000, LENGTH = 0x00008000

}

Make sure to use the right addresses for instruction and data and to protect your memory
from Linux accesses.

Finally load the code to your starting address ad run it.

Installation

18 FreeRTOS on FSiMX6SX Boards

3 Installation

This section describes the installation of the CST code-signing client files.

3.1 Installation of the GCC embedded toolchain

The examples are tested and can be built with the GCC embedded toolchain (gcc-arm-none-
eabi-8-2019-q3-update), which can be found under https://launchpad.net/gcc-arm-
embedded.

If the toolchain is not installed, you have to download the file and extract the content to your
filesystem:

tar -xvjf gcc-arm-none-eabi-${version}.tar.bz2

where ${version} will be replaced by the corresponding version you've downloaded.

It is necessary to export the ARMGCC_DIR environment variable, if it´s not already exported:

export ARMGCC_DIR=/usr/local/arm/gcc-arm-none-eabi-${version}

For a more convenient way you can add this to the rc file of your favorite shell (e.g. zshrc,
bashrc, etc.)

3.2 Download Source Code

To download FreeRTOS source code, go to the F&S main website

http://www.fs-net.de

Figure 1: Register with F&S website

https://launchpad.net/gcc-arm-embedded
https://launchpad.net/gcc-arm-embedded
http://www.fs-net.de/

Installation

 FreeRTOS on FSiMX6SX Boards 19

First you have to register with the website. Click on Login right at the top of the window and
on the text “I am not registered, yet. Register now” (Figure 1).

In the screen appearing now, fill in all fields and then click on Register. You are now regis-
tered and can use the personal features of the website, for example the Support Forum and
downloading software.

After logging in, you are at your personal page, called “My F&S”. You can always reach this
place by selecting Support → My F&S from the top menu. Here you can find all software
downloads that are available for you. In the top sections there are private downloads for you
or your company (may be empty) and in the bottom section you will find generic downloads
for all registered customers.

To get access to the software of a specific board, you have to enter the serial number of one
of these boards (see Figure 2). Click on “Where can I find the serial number” to get pictures
of examples where to find this number on your product. Enter the number in the white field
and press Submit serial number. This enables the software section for this board type for
you. You will find Linux, Windows CE, and all other software and tools available for this plat-

form like DCUTerm or NetDCUUsbLoader.

First click on the type of your board, e.g. efusA9X, then on Linux. Now click on FreeRTOS.
This will bring up a list of all our FreeRTOS releases. Old releases up to 2019 had V<x>.<y>
as version identifier, new releases use V<year>.<month>. We will abbreviate this as <v>
from now on. Select the newest version, for example freertos-fsimx6sx-V2019.12. This will
finally show two archives that can be downloaded.

Figure 2: Unlock software with the serial number

Installation

20 FreeRTOS on FSiMX6SX Boards

When you look at our Linux releases, you will find a list of all our releases and a README
text. There are usually two files related to a release.

freertos-fsimx6sx-<v>.tar.bz2 This is the main release itself containing all

sources, the binary images, the documentation and the
toolchain.

3.3 Release Content

These tar archives are compressed with bzip2. To see the files, you first have to unpack the
archives

tar xvf freertos-<arch>-<v>.tar.bz2

This will create a directory <arch>-<v> that contains all the files of the release. They often

use a common naming scheme:

<package>-<platform>-<v>.<extension>

With the following meaning:

<package> The name of the package (e.g. freertos-bsp). If it is a

source package, we also add the version number of the
original package that our release is based on, for example
freertos-bsp-1.0.1.

<platform> The name of a board, if the package is only valid on one

board (e.g. efusA9X); or the name of an architecture, if

the package is valid on different boards of the same archi-

tecture (e.g. fsimx6sx), or the string f+s or fus if the

package is architecture independent.

<v> Release version, consisting of a letter V for version and

the year and month of the release (e.g. V2019.12).

<extension> The extension of the package (e.g. .bin, .tar.bz2,

etc.).

Installation

 FreeRTOS on FSiMX6SX Boards 21

The following table lists the files that you get after unpacking the release archive. To avoid

having a too excessive list, we use the wildcard * in some entries to refer to a whole group of

similar file names that only differ in the name of the board or module.

Directory/File Description

/ Top directory

README-freertos-f+s.txt Release information (FreeRTOS)

setup-freertos Script to unpack FreeRTOS source pack-
ages to a build directory

binaries/ Images to be used with the board direct-
ly

efusa9x/*-<v>.bin Precompiled examples for efusa9x

picocoma9x/*-<v>.bin Precompiled examples for picocoma9x

picocoremx6sx/*-<v>.bin Precompiled examples for picocoremx6sx

sources/ Source packages

freertos-bsp-1.0.1-fsimx6sx-

V2019.12.tar.bz2
FreeRTOS source

toolchain/ Cross-compilation toolchain

gcc-arm-none-eabi-8-2019-q3-update-

linux.tar.bz2
ARM toolchain to use with <arch>

doc/ Documentation

FreeRTOS_on_FSiMX6SX_Boards_eng.pdf Manual on how to use/configuring the
software

Table 2: Content of the created release directory

Installation

22 FreeRTOS on FSiMX6SX Boards

3.4 Unpacking the Source Code

The source code packages are located in the sources subdirectory of the release archive.

We will assume that you want to create a separate build directory where you extract the
source code and build all the software.

We have prepared a shell script called setup-freertos that does this installation automat-

ically. Just call it when you are in the top directory of the release and give the name of the
build directory as argument.

cd <release-dir>

./setup-freertos <build-dir>

Add option --dry-run if you want to check first what this command will do. Then only a list

of actions will be output but no actual changes will take place. For further information simply
call

./setup-freertos --help

If you prefer to do the installation by hand, well, the script more or less executes the following
commands, just with some more checks and directory switching.

mkdir <build-dir>

tar xf freertos-bsp-1.0.1-fsimx6sx-<v>.tar.bz2

Description of the FreeRTOS examples directory structure

 FreeRTOS on FSiMX6SX Boards 23

4 Description of the FreeRTOS examples di-
rectory structure

The examples directory contains the SoC and board specific Cortex-M4 examples. The first
level distinguishes between the different SoC-architectures. At the second level you will find
the SoC specific examples. For the MX6SX-examples the board specific examples are locat-
ed in the board_specific_files directory.

The examples are structured as follows:

4.1.1 demo_apps

Here you can find the applications which highlight certain key features of the ARM Cortex-M4
Core combined with FreeRTOS.

4.1.2 driver_examples

You can find simple applications here which are intended to show peripheral drivers working
with FreeRTOS in the bare metal environment.

4.1.3 multicore_examples

Here you can find examples, which demonstrate the multicore communication via RPMsg.

4.1.4 board_specific_files

This folder contains board specific files like pinout. When you execute the prepare.sh script,

links to the specific board files will be created in the freertos-fsimx6sx-
<v>/boards/fsimx6sx/ directory.

Attention

Examples which make use of on-board sensors, e.g. magnetic field strength measuring were
not ported, so use them at your own risk!

Note 1: Information about not ported examples

Configuration for Cortex-M4 usage

24 FreeRTOS on FSiMX6SX Boards

5 Configuration for Cortex-M4 usage

5.1 Changes regarding official U-Boot

F&S provides you with a modified U-Boot which can make use of the Cortex-M4 via the

bootaux command. Since our U-Boot is heavily modified compared to the official release

from NXP, it's not advisable to use any other than the one provided by F&S.

1. We modified the bootaux command. You can enable, disable and start the auxiliary

core by using the commands described in the next subchapter.

If you want to boot your examples from the dram or try RPMsg examples, make sure the re-

served_ram_size variable is set.

setenv reserved_ram_size 100000

5.2 Using bootaux

Active or not?

If you want to know if the auxiliary core is running, just type

bootaux

This will state if the clocks are active and the core available.

Simple start

Using the auxiliary core can be achieved by using the following command line inside of the
U-Boot environment:

tftp ${m4_file}; cp.b $loadaddr 0x7f8000 $filesize; bootaux

0x7f8000

This will load an image defined by m4_file via tftp to your board, move it to the TCM and

start the auxiliary core.

Reloading of auxiliary core image

If you need to reload or switch the image or if you simply want to deactivate the auxiliary
core, just type

bootaux stop

To re-enable the auxiliary core type

bootaux start

Then you can issue a

Configuration for Cortex-M4 usage

 FreeRTOS on FSiMX6SX Boards 25

tftp ${m4_file}; cp.b $loadaddr 0x7f8000 $filesize; bootaux

0x7f8000

To simply reload an image from your tftp server and execute it on the auxiliary core (Make

sure to modify m4_file according to the name of the image you want to execute).

5.3 Modifying the Linux Device Tree

To get all the examples running the Linux Device Tree has to be changed. By uncommenting

#define SUPPORT_M4

In the device tree all the necessary changes will be made.

General Modifications on FreeRTOS examples

26 FreeRTOS on FSiMX6SX Boards

6 General Modifications on FreeRTOS exam-
ples

The files needed for general modifications (board.*, pin_mux.*, etc.) can be found under
freertos-fsimx6sx-

<v>/examples/fsimx6sx/board_specific_files/BOARD_NAME.

6.1 Changes to the clock handling

In order to boot Linux while running the FreeRTOS examples, the Cortex-M4 has to tell the
Cortex-A9, which clocks are needed and shouldn't get turned off. This is done by a shared
memory area in the OCRAM which needs to get initialized from both sides. This has not
been done at the FreeRTOS side so far.

We implemented a functionality that initializes the shared memory in the hardware_init()
function of each example and adds an entry to the shared clock table whenever a shared
clock gets enabled or disabled .

6.2 Changes in board.c

We removed unnecessary parts in BOARD_ClockInit() and dbg_uart_init() since some of
these settings were already covered by our NBoot.

We added a function that initializes the shared clock memory and gets called by the
BOARD_ClockInit() function.

Also the dbg_uart_init() function now enables the UART shared clock nodes.

6.3 Changes in board.h

 We modified the BOARD_GPIO_KEY_* and BOARD_GPIO_LED_* defines to comply

with our GPIOs on the board.

 The BOARD_ADC_INPUT_CHANNEL was changed to comply with our ADCs on the

board.

 BOARD_I2C_MODULE_ADDR was added for i2c-demos

 The pin mux configuration was a bit tedious, so we added a macro which can be used
in conjunction with

./devices/MCIMX6X/include/imx6sx_iomuxc_pins.h

which resembles a file from the Linux kernel to set the pad settings. This simplifies

the setting of the pads and mux's in pin_mux.c and coherent with the Linux ones

used by the Cortex-A9

 BOARD_I2C_MODULE_ADDR was added. This is the slave address for the I2CX mod-

ule used on the board

General Modifications on FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 27

 added defines for sema4 gate number and shared memory ocram start address

 added defines for board specific shared clock indexes

Macro for setting the pad

set_iomux(PAD_MUX_SETTINGS, pad_value)

PAD_MUX_SETTINGS Array of 5 values which corresponds

 to the iomuxc values stated in

 imx6sx_iomuxc_pins.h

pad_value hex value representing the settings

 for the pad register

Example

/* Setting the TXD for UART1 */

set_iomux(MX6SX_PAD_GPIO1_IO04__UART1_TX, 0x1B0B1);

This will set the UART1_TX to 0x1B0B1 in the IOMUXC.

6.4 Changes in gpio_pins.c

We added predefined GPIOs for the blinking_imx_* and other demos. The unused ones

were commented out since we modified the ported examples.

The configure_gpio_pin() was changed. This decision was made since this code seems a bit
confusing; this part should be done in the pin_mux.c because it's similar to setting the pads
and mux's in the IOMUXC. We use the set_iomux() macro in this function instead.

6.5 Changes in gpio_pins.h

We modified the _gpio_config struct to reflect the changes made for the configure_gpio_pin()
function.

Some of the extern gpio_config_t declarations were commented out since we changed the
predefined GPIOs.

6.6 Changes in pin_mux.c

Instead of setting the Pads, Mux's and everything else via the NXP defines we make use of
the set_iomux() macro described in chapter 6.3 to simplify the whole setup process.

We mainly changed the pads and mux's to the ones used on the efusA9X board from F&S.

6.7 Changes in ccm_imx6sx.h

Added function that makes the necessary shared clock entries when a clock gets enabled.

Compiling the examples

28 FreeRTOS on FSiMX6SX Boards

7 Compiling the examples

To simplify the process of building, configuring the examples and cleaning up we provide you
with a set of bash scripts located in the root directory of the FreeRTOS BSP:

7.1 Prepare.sh

This script will configure board relevant settings and create symlinks to the board specific

header files in examples/fsimx6sx. You can execute the script in your terminal by typing

./prepare.sh

and follow the instructions given by the cli:

Choose on of the following boards for which you want to build the examples:

efusa9x[1] picocoma9x[2] picocoreMX6SX[3] picocore7ulp[4] …[…]

Enter number in []-brackets for the corresponding board: 2

Symlinks to board specific files created!

Do you want a Release or Debug build?

 (r/d) [default: r]: r

Did you change the address of the reserved DRAM-memory?

 (y/n) [default: n]: n

Setting vring_buffers to 0x8fff0000

If you have a PicoCOMA9X with a fused PCIE_DISABLE, you need

the workaround to disable RDC_* calls, otherwise your CPU will hang

(See documentation, last chapter)

(y/n) [default: n]: y

All set up, starting cmake...

Note

The question in prepare.sh “Did you change the address of the reserved DRAM-memory?”
was added. We changed the memory area where the ring buffers are located. For more in-
formation please take a look at chapter 2 Different kind of memory regions.

Compiling the examples

 FreeRTOS on FSiMX6SX Boards 29

7.2 Make

The prepare.sh script will configure and invoke cmake to generate a Makefile. After this,

you can run

make -jN

To build all examples located in boards/fsimx6sx and install the binaries to freertos-
bsp-1.0.1-fsimx6sx-V<year>.<month>/bin/$BOARD.

N is the number of the CPU cores in your development PC.

If you want to build a specific example just type

make -jN example_name && make install/fast

to build and install the binary of the chosen example.

Type

make help

for a list of possible examples for make.

By executing

make clean-all

you can clean up all build files and binaries. This will be necessary if you make changes to

the CmakeLists.txt in the root directory of the FreeRTOS BSP.

Adding custom boards

30 FreeRTOS on FSiMX6SX Boards

8 Adding custom boards

If you're using a custom board, you have to tell the prepare.sh script about its existence

and create some configuration files (or simply copy the existing ones).

To tell the script about it, change the following lines in the prepare.sh script:

declare -a SUPPORTED_BOARDS=("efusa9x" "picocoma9x" "pico-

coremx6sx" “picocoremx7ulp” "boardname")

where boardname represent the name of your board and an entry to

declare -a SUPPORTED_SOCS=("fsimx6sx" "fsimx6sx" "fsimx6sx"

"fsimx7ulp" fsimx6sx)

so the number of your boardname matches the number of its specific SOC.

The following files, located at exam-

ples/fsimx6sx/board_specific_files/boardname, are needed to successfully

compile the BSP for your own board:

 boardname_board.c

 boardname_board.h

 boardname_pin_mux.c

 boardname_pin_mux.h

 boardname_gpio_pins.c

 boardname_gpio_pins.h

boardname must be replaced by the name of your board. This must be same name as uses

in the SUPPORTED_BOARDS array used in the prepare.sh script.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 31

9 FreeRTOS examples

In this chapter we will provide you with necessary information on the demo and driver appli-
cations.

The “Description” will inform you about the demo's purpose.

In the “Modifications made” section you will find useful information if changes were made to
certain files by F&S and the reason behind these changes.

“Changes needed” is the most important section. You will find the information necessary to
successfully build and execute the examples here.

The last section, “Execute binary” will tell you the required steps to execute the image built.

9.1 General build and run information

Build the examples like described in Building the examples and copy them to you tftp-
directory.

It might be helpful to define a shorthand command to run the Cortex-M4 examples inside the
U-Boot:

setenv m4 "'tftp ${m4_file}; cp.b $loadaddr 0x7f8000 $filesize;

bootaux 0x7f8000'"

In the following examples we will use this variable m4 instead of the content of this variable,

except the destination address is not equal to the TCM address.

Make sure that the environment variable reserved_ram_size in the U-Boot is set to 1MB

setenv reserved_ram_size 100000

Now simply run the commands described in the Execute binary section of each example.

Attention

If you want to run the examples while booting the Cortex-A9, you have to make sure that the

define SUPPORT_M4 in your Linux device-tree is uncommented.

To use the CortexM4 in the U-Boot and Linux, without complications, we need to change the
clock frequency from 80Hz to 24Hz. To achieve that, we can simply add an argument in our
U-Boot: “setenv extra uart_from_osc”.

FreeRTOS examples

32 FreeRTOS on FSiMX6SX Boards

9.2 demo_apps

Remark

The documentation is based on the FreeRTOS BSP 1.0.1 package from NXP.

Some of the software examples provided by NXP expect a certain module or sensor to be
available on the board. Since F&S boards do NOT provide these, the associated examples
weren't ported at all.

9.2.1 hello_world

Description

Just a simple application which prints a “hello world!” string on the Cortex-M4 side and echo-
ing input back to the user if he is connected to the Cortex-M4 via UART.

Modifications made

None.

Changes needed

None.

Execute binary

Run

setenv m4_file "hello_world.bin"

run m4

to start the example.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 33

9.2.2 hello_world_ocram

Description

This example doesn't use the TCM but can be launched in OCRAM instead.

Modifications made

None

Changes needed

None

Execute binary

setenv m4_file "hello_world_ocram.bin"

tftp hello_world_ocram.bin; cp.b $loadaddr 0x910000 $filesize;

dcache flush; bootaux 0x910000

FreeRTOS examples

34 FreeRTOS on FSiMX6SX Boards

9.2.3 hello_world_ddr

Description

Works similar to hello_world_ocram except that it uses DDR instead of OCRAM.

Modifications made

None

Changes needed

Make sure that the environment variable reserved_ram_size in the U-Boot is set to 1MB

setenv reserved_ram_size 100000

Execute binary

Run

setenv m4_file "hello_world_ddr.bin"

tftp hello_world_ddr.bin; cp.b $loadaddr 0x8ff00000 $filesize;

dcache flush; bootaux 0x8ff00000

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 35

9.2.4 hello_world_qspi

This example wasn't ported because we do not offer a QSPI chip on the efusA9X and Pico-
COMA9X.

If you want to run this example you have to port it by yourself.

FreeRTOS examples

36 FreeRTOS on FSiMX6SX Boards

9.2.5 hello_world_split

Description

Just a simple application which prints the name of the current function on the Cortex-M4 side
and echoing input back to the user if he is connected to the Cortex-M4 via UART. If the user
types in small letter “s” then program is switching between the functions. The special on this
example is that, it have 3 different functions (HelloTaskTCM, HelloTaskDRAM, Hello-
TaskOCRAM). These functions are located in 3 different memory areas. So this example
shows you how to split your code and outsource different functions to different memory are-
as. Normally the text section of the DRAM should be located in the first 256 MB. This makes
the Code a little bit faster, but the U-Boot doesn’t support this at the moment. So that’s why
we use also the upper address area, like the data section of the DRAM.

Modifications made

The hello_world example was the basis of this example. Rename main function and im-

prove it. Add 2 more C-Files for DRAM and OCRAM. Created linker Script called

MCIMX6X_M4_split.ld and created Startup file called startup_MCIMX6X_M4_split.S.

Modified CMakeLists.txt.

Changes needed

Make sure that the environment variable reserved_ram_size in the U-Boot is set to 1MB

setenv reserved_ram_size 100000

Image

You have 3 different binaries as output files. hello_world_split_tcm.bin, hel-

lo_world_split_dram.bin and hello_world_split_ocram.bin.

Execute binary

Run

tftp hello_world_split_tcm.bin

cp.b $loadaddr 0x7f8000 $filesize

tftp hello_world_split_dram.bin

cp.b $loadaddr 0x8ff00000 $filesize

tftp hello_world_split_ocram.bin

cp.b $loadaddr 0x910000 $filesize

bootaux 0x7f8000

to start the example.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 37

9.2.6 blinking_imx_demo

Description

By running this demo you can let a LED blink or print out '+' and '-' with different frequencies
by pressing a key connected to a GPIO.

Modifications made

Changed BOARD_GPIO_KEY_* and BOARD_GPIO_LED_* in board.h to the gpios con-

figured in gpio_pins.c in ./examples/fsimx6sx.

Added

configure_gpio_pin(BOARD_GPIO_LED_BLINK_IMX);

in hardware_init.c.

Added

#define BOARD_GPIO_LED_BLINK_IMX (&gpioBoard_Specific_Entry)

in board.h

Changed checked value for GPIO_ReadPinInput() in GPIO_Ctrl_WaitKeyPressed() from 0 to
1.

Changes needed

Connect a KEY and a LED to the following GPIO-pin

efusa9x

Set as Function Device GPIO
efusA9X Rev

1.2X
efus-SINTF Rev

1.30

KEY I2C_B_IRQ I2C3_IRQn GPIO7_IO01 J4_86 J22_48

LED, BLINK PWM_A PWM5 GPIO3_IO24 J4_25 J22_32

PicoCOMA9X

Set as Function Device GPIO
PicoCOMA9X

Rev 1.10
PC2-SINTF PCOMnet

KEY SPI_MISO SPI1 GPIO2_IO11 J2_26 J10_3 J3_3

LED, BLINK SPI_MOSI SPI1 GPIO2_IO15 J2_29 J10_6 J3_6

FreeRTOS examples

38 FreeRTOS on FSiMX6SX Boards

PicoCoreMX6SX

Set as Function Device GPIO
PicoCoreMX6SX

Rev 1.10
PCoreBBRGB

Rev 1.20

KEY GPIO4_25 GPIO GPIO4_IO25 J1_26 J10_4

LED, BLINK GPIO4_26 GPIO GPIO4_IO26 J1_24 J10_3

Connect the KEY to 3.3V and the LED to GND.

If you do not want to connect a LED you can change the line in board.h.

#define BOARD_GPIO_LED_ BLINK_IMX (&gpioBoard_Specific_Entry)

to

#undef BOARD_GPIO_LED_ BLINK_IMX

Execute binary

Run

setenv m4_file "blinking_imx_demo_epit.bin"

run m4

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 39

9.2.7 can_wakeup

Description

In this demo application you can see the low power management feature of the Cortex-M4
with CAN in stop-mode. The Cortex-M4 will enter stop-mode after the receiver program is
running on the Cortex-M4 and the Cortex-A9 is booted up.

It's possible to send Cortex-A9 into suspend mode by entering

echo mem > /sys/power/state

inside of the Linux system and then start the transmitter program on the other board. This will
wake up the Cortex-A9 while the Cortex-M4 is receiving the data sent.

For further information on how to set up the two boards consult the “Get-

ting_Started_with_FreeRTOS_BSP_for_i.MX_6SoloX.pdf” located in the

doc/imx6sx folder in the FreeRTOS BSP package.

Modifications made

Changed /armgcc/CMakeLists.txt to set CMAKE_EXE_LINKER_FLAGS_* to TCM in-

stead of the default QSPI. This makes it possible to run the program directly on the Cortex-

M4 memory. Also removed the shared clocks initialization form main.c of the receive part

because it’s already done at hardware_init.c.

Changes needed

Connect CAN_*_H to the corresponding CAN_*_H on the second board and do the same
with CAN_*_L.

efusa9x

Function Device
efusA9X Rev

1.2X
Function efus-SINTF Rev 1.30

CAN_B_TX FLEXCAN2 J4_35 CAN_B_H J22_55

CAN_B_RX FLEXCAN2 J4_37 CAN_B_L J22_56

PicoCOMA9X

Function Device
PicoCOMA9X

Rev 1.10
Function PC2-SINTF PCOMnet

CAN_A_TX FLEXCAN1 J2_30 CANH J10_25 J3_13

CAN_A_RX FLEXCAN1 J2_31 CANL J10_26 J3_14

FreeRTOS examples

40 FreeRTOS on FSiMX6SX Boards

PicoCoreMX6SX

Function Device PicoCoreMX6SX Rev 1.10 Function PCoreBBRGB Rec 1.20

CAN_A_TX FLEXCAN1 J1_12 CAN_1_H J6_4

CAN_A_RX FLEXCAN1 J1_10 CAN_1_L J6_3

Execute binary

Run

mw.w 0x91f000 0x04; dcache flush

to clear the shared memory magic numbers and then

setenv m4_file "can_wakeup_rx.bin"

run m4; boot

on board one. After the Cortex-A9 has booted up, you can execute Listing on board 1 and
change to board 2 and run

setenv m4_file "can_wakeup_tx.bin"

run m4

You should see sent and received packets on both Cortex-M4 Screens and the Cortex-A9
woken up.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 41

9.2.8 fs_adc_i2c_rpmsg_demo

Description

To show the benefits of using an auxiliary real time core in combination with the Linux oper-
ating system, F&S created a demo application which consists of two parts:

 The fs_adc_i2c_rpmsg_demo.bin which can be executed by the Cortex-M4

 A kernel driver fs_rpmsg, which will be automatically loaded while booting the Cor-

tex-A9

The first application will initialize the ADC on the I2C Extension Board from F&S, trigger a
conversion request to the ADC and fetching the results back via I2C. Afterwards, these re-
sults will be send one by one to the Cortex-A9 via RPMsg.

On the Cortex-A9 side, the driver will fetch the results from the RPMsg buffer and append it
to a ring-buffer. It also create a sysfs entry under

/sys/bus/rpmsg/drivers/fs_rpmsg/rpmsg0/buffer

By using cat you're able to retrieve the results on the command line as a comma separated
string.

/sys/bus/rpmsg/drivers/fs_rpmsg/rpmsg0/buffer

1.68V, 1.68V, 1.68V, 1.68V, 0.73V, 0.34V, 0.34V

By default the driver is deactivated so first you have to activate the kernel driver via make

menuconfig, compile the kernel and install it on your corresponding board.

Modifications made

These demo was created by F&S.

Changes needed

Connect a potentiometer to a voltage divider, which divides your 3.3 V input voltage down to
2.5 V (the internal reference voltage of the used ADC ADS7828). Then connect it to CH0 on
the I2C Extension Board (see table below).

I2C-Extension-Board

Name Connector

I2C_SCL J1_11

I2C_SDA J1_10

Name Connector

CH0 J2_17

COM J2_25

FreeRTOS examples

42 FreeRTOS on FSiMX6SX Boards

efusa9x

Function Device efusA9X Rev 1.2X efus-SINTF Rev 1.30

I2C_B_SCL I2C3 J4_84 J22_46

I2C_B_SDA I2C3 J4_82 J22_45

PicoCOMA9x

Function Device PicoCOMA9X Rev 1.10 PC2-SINTF PCOMnet

I2C_A_SCL I2C4 J2_33 J10_10 J3_10

I2C_A_SDA I2C4 J2_32 J10_9 J3_9

PicoCoreMX6SX

Function Device PicoCoreMX6SX Rev 1.20 PCoreBBRGB Rec 1.20

I2C_A_SCL I2C4 J1_21 n.c.

I2C_A_SDA I2C4 J1_23 n.c.

Alternatively you can use an external 3.3V reference voltage by setting the constant

ads7828InitConfig.pd_selection in main.c to adOn and flip switch 3 from S2 at

the I2C-Extension-Board to on as seen in the picture below.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 43

Activate the fs_rpmsg driver in make menuconfig. Typing “/” will open a search-bar there

you can search fs_rpmsg, now select the fs_rpmsg driver by typing the corresponding num-
ber which you can see on the left of the block e.g.“1” and then type either “y” for activating it

or “n” to deactivate it. After that you can exit the menuconfig and save the changes. Make

sure to deactivate it later if you want to run other rpmsg examples.

If you are working with the PicoCOMA9X you also need to activate jumper 1 and 2 from S2.
This jumpers are setting a Pull-up on the I2C wires because neither the module itself nor the
baseboard have Pull-ups on the I2C data and clock wire.

Execute binary

If everything is set up, run

setenv m4_file "fs_adc_i2c_rpmsg_demo.bin"

run m4

on the Cortex-M4, then boot Linux on the Cortex-A9. After you logged in, you can use

cat /sys/bus/rpmsg/drivers/fs_rpmsg/ virtio0.rpmsg-openamp-demo-

channel.-1.30/buffer

to get the results.

Figure 3: I2C extension board jumpers

FreeRTOS examples

44 FreeRTOS on FSiMX6SX Boards

9.2.9 fs_i2c_extension_board_demo

Description

This demo shows how to use I2C to control devices via master/slave-communication. The
demo was designed by F&S to use the I2C Extension Board with FreeRTOS and a PCA9555
driver provided by F&S instead of onboard sensors. You can choose between a polling and
interrupt demo on boot up.

Modifications made

A PCA9555 driver was implemented by F&S, the main.c was also reworked to communi-

cate with the I2C Extension Board. The key for switching the LEDs has been debounced.

Changes needed

You have to connect the I2C pins on the Starterkit with the corresponding ones on the I2C
Extension Board. If you want to run the interrupt demo, you also have to connect a KEY to
the corresponding GPIO and 3.3V

efusa9x

Function Device efusA9X Rev 1.2X efus-SINTF Rev 1.30

I2C_B_SCL I2C3 J4_84 J22_46

I2C_B_SDA I2C3 J4_82 J22_45

Set as Function Device GPIO
efusA9X Rev

1.2X
efus-SINTF Rev

1.30

KEY I2C_B_IRQ I2C3_IRQn GPIO7_IO01 J4_86 J22_48

PicoCOMA9X

Function Device PicoCOMA9X Rev 1.10 PC2-SINTF PCOMnet

I2C_A_SCL I2C4 J2_33 J10_10 J3_10

I2C_A_SDA I2C4 J2_32 J10_9 J3_9

Set as Function Device GPIO
PicoCOMA9X

Rev 1.10
PC2-SINTF PCOMnet

KEY SPI_MISO SPI1 GPIO2_IO11 J2_26 J10_3 J3_3

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 45

PicoCoreMX6SX

Function Device PicoCoreMX6SX Rev 1.20 PCoreBBRGB Rec 1.20

I2C_A_SCL I2C4 J1_21 n.c.

I2C_A_SDA I2C4 J1_23 n.c.

Set as Function Device GPIO
PicoCoreMX6SX

Rev 1.10
PCoreBBRGB

Rev 1.20

KEY GPIO4_25 GPIO GPIO4_IO25 J1_26 J10_4

I2C-Extension-Board

Name Connector

I2C_SCL J1_11

I2C_SDA J1_10

Execute binary

Connect the pins on the I2C Extension Board and the Starterkit like stated in the paragraph
above and run

setenv m4_file "fs_i2c_extension_board_demo.bin"

run m4

After the demo launched you will get the following screen:

---------- i.MX 6SoloX i2c extension board example -----------

Please select the i2c demo you want to run:

[1].PCA9555 I2C Extension Board Polling Demo

[2].PCA9555 I2C Extension Board Interrupt Demo

Now you can choose between a polling and interrupt version by pressing the corresponding
key on the keyboard.

FreeRTOS examples

46 FreeRTOS on FSiMX6SX Boards

If you press '1', you will get

---------- i.MX 6SoloX i2c extension board example -----------

Please select the i2c demo you want to run:

[1].PCA9555 I2C Extension Board Polling Demo

[2].PCA9555 I2C Extension Board Interrupt Demo

Your choice: Polling Demo

The LEDs have been successfully turned off!

The LEDs have been successfully turned on!

The LEDs have been successfully turned off!

The LEDs have been successfully turned on!

The LEDs have been successfully turned off!

And the LEDs on the I2C Extension board will be toggled every 1 s.

If you press '2', you will get

---------- i.MX 6SoloX i2c extension board example -----------

Please select the i2c demo you want to run:

[1].PCA9555 I2C Extension Board Polling Demo

[2].PCA9555 I2C Extension Board Interrupt Demo

Your choice: Interrupt Demo

The LEDs have been successfully turned off!

The LEDs have been successfully turned on!

And the LEDs will be toggled if you press the button connected to the BOARD_GPIO_KEY.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 47

9.2.10 periodic_wfi_tcm

Description

This demo also highlights the low power management feature of the Cortex-M4 by setting
itself in sleep mode, informing Cortex-A9 about its power state who then can shut down all
peripherals which are not needed anymore.

Modifications made

Commented out some lines in main.c since the demo now uses TCM instead of QSPI.

Changed CMAKE_EXE_LINKER_FLAGS_* to use *tcm_lowpower.ld instead of
*qspi2b.ld

Changes needed

None

Execute binary

Run

mw.w 0x91f000 0x0 4; dcache flush

to clear the shared memory magic numbers and then

setenv m4_file "periodic_wfi.bin"

run m4

to kick off the demo. After the Cortex-A9 has booted, you can use the command in listing to
set the Cortex-A9 in dormant mode. The Cortex-M4 will reactivate it after the EPIT has trig-
gered.

FreeRTOS examples

48 FreeRTOS on FSiMX6SX Boards

9.2.11 pingpong_bm

Description

The Master peer on Linux side sends an integer to the Cortex-M4 application, which adds
one and transfers it back. This demo works on bare metal base.

Modifications made

Added

LMEM_FlushSystemCache(LMEM);

LMEM_InvalidateSystemCache(LMEM);

to middleware/multicore/rpmsg_lite/lib/rpmsg_lite/rpmsg_lite.c

Ported the rpmsg_openAMP examples to rpmsg_lite.

Changes needed

Make sure that the fs_rpmsg driver is deactivated.

Execute binary

First run

setenv m4_file "rpmsg_pingpong_bm_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_pingpong

to load the pingpong master side module. After this you should see

Get Data From Master Side : 0

Get Data From Master Side : 2

Get Data From Master Side : 4

on Cortex-M4 and

get 1 (src: 0x0)

get 3 (src: 0x0)

get 5 (src: 0x0)

on Cortex-A9 side.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 49

9.2.12 pingpong_freertos

Description

The Master peer on Linux side sends an integer to the Cortex-M4 application, which adds
one and transfers it back. The FreeRTOS RPMsg API is used here.

Modifications made

See Modifications made in pingpong_bm.

Changes needed

Make sure that the fs_rpmsg driver is deactivated.

Execute binary

First run

setenv m4_file "rpmsg_pingpong_freertos_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_pingpong

to load the pingpong master side module. After this you should see

Get Data From Master Side : 0

Get Data From Master Side : 2

Get Data From Master Side : 4

on Cortex-M4 and

get 1 (src: 0x0)

get 3 (src: 0x0)

get 5 (src: 0x0)

on Cortex-A9 side.

FreeRTOS examples

50 FreeRTOS on FSiMX6SX Boards

9.2.13 str_echo_bm

Description

This demo demonstrate the RPMsg extension API by creating a channel from Cortex-A9 to

Cortex-M4 via /dev/ttyRPMSG. After initialization, you can enter a string which then will be

replied back and can be read from /dev/ttyRPMSG. This demo works on bare metal base.

Modifications made

See Modifications made in pingpong_bm.

Changes needed

Make sure that the fs_rpmsg driver is deactivated.

Execute binary

First run

setenv m4_file "rpmsg_str_echo_bm_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_tty

to load the tty master side module.

Now you can echo content via /dev/ttyRPMSG to the Cortex-M4, which then will reply this
back to said device:

echo 'Test' > /dev/ttyRPMSG30 && read x < /dev/ttyRPMSG30 && echo

$x

This will send the string “Test” to the Cortex-M4, read out /dev/ttyRPMSG again to a variable
and print this in the terminal.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 51

9.2.14 str_echo_freertos

Description

This demo demonstrate the FreeRTOS RPMsg extension API by creating a channel from

Cortex-A9 to Cortex-M4 via /dev/ttyRPMSG. After initialization, you can enter a string

which then will be replied back and can be read from /dev/ttyRPMSG. This demo uses the

FreeRTOS RPMsg API.

Modifications made

See Modifications made in pingpong_bm.

Changes needed

Make sure that the fs_rpmsg driver is deactivated.

Execute binary

First run

setenv m4_file "rpmsg_str_echo_freertos_example.bin"

run m4; boot

then wait for Linux OS to finish booting. Log in, then type

modprobe imx_rpmsg_tty

to load the tty master side module.

Now you can echo content via /dev/ttyRPMSG to the Cortex-M4, which then will reply this
back to said device:

echo 'Test' > /dev/ttyRPMSG30 && read x < /dev/ttyRPMSG30 && echo

$x

This will send the string “Test” to the Cortex-M4, read out /dev/ttyRPMSG again to a varia-

ble and print this in the terminal.

FreeRTOS examples

52 FreeRTOS on FSiMX6SX Boards

9.2.15 sema4_demo

Description

Simple demo which shows how to implement a multicore mutex without spinning with CPU.

Modifications made

None

Changes needed

None

Execute binary

Run

setenv m4_file "sema4_demo.bin"

run m4

to kick off the demo.

9.2.16 sensor_demo

This example wasn't ported because the efusA9X does not provide any onboard sensors.

You can still find the demo in

not_tested/fsimx6sx/sensor_demo

but you should use the i2c_extension_board_demo with the I2C Extension Board from

F&S instead.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 53

9.3 driver_examples

9.3.1 adc_imx6sx (efusa9x only)

Description

This example demonstrate the usage of the ADC on the efusA9X by measuring the AD input
on the ADC1_IN0, converting and printing the result every 5 second to the console.

Modifications made

None

Changes needed

The efusA9X does not have the RN3 resistor network (22R) connected on the board by de-
fault, so keep in mind to add this if you want to run the example.

Execute binary

Run

setenv m4_file "adc_imx6sx_example.bin"

run m4

FreeRTOS examples

54 FreeRTOS on FSiMX6SX Boards

9.3.2 ecspi_interrupt

Description

In this example the master board transfers an array to the slave board, which is then send
back to the master. This demo uses interrupts.

Modifications made

Inserted function calls

ECSPI_SetDataInactiveState(BOARD_ECSPI_MASTER_BASEADDR,

BOARD_ECSPI_MASTER_CHANNEL, ecspiDataLineStayLow);

and

ECSPI_SetDataInactiveState(BOARD_ECSPI_SLAVE_BASEADDR,

BOARD_ECSPI_SLAVE_CHANNEL, ecspiDataLineStayLow);

to the master and slave main.c to keep MOSI low between assertion of CS and starting

the clock.

Changes needed

You have to connect the masters MOSI, MISO, CLK and CS1 ping with their counterparts on
the slave board (MOSI → MOSI, MISO → MISO, CLK → CLK and SSx/CSx → SSx/CSx).

efusa9x

Function Device efusA9X Rev 1.2X efus-SINTF Rev 1.30

SPI_B_MISO SPI1 J4_50 J22_23

SPI_B_MOSI SPI1 J4_52 J22_24

SPI_B_CLK SPI1 J4_54 J22_25

SPI_B_CS1 SPI1 J4_56 J22_26

PicoCOMA9X

Function Device PicoCOMA9X Rev 1.10 PC2-SINTF PCOMnet

SPI_MISO SPI1 J2_26 J10_3 J3_3

SPI_MOSI SPI1 J2_29 J10_6 J3_6

SPI_CLK SPI1 J2_28 J10_5 J3_5

SPI_CS0 SPI1 J2_27 J10_4 J3_4

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 55

FreeRTOS examples

56 FreeRTOS on FSiMX6SX Boards

PicoCoreMX6SX

Function Device PicoCoreMX6SX Rev 1.20 PCoreBBRGB Rec 1.20

SPI_A_MISO ECSPI5 J1_16 J10_17

SPI_A_MOSI ECSPI5 J1_18 J10_16

SPI_A_CLK ECSPI5 J1_20 J10_12

SPI_A_SS0 ECSPI5 J1_14 J10_14

Execute binary

First run

setenv m4_file "ecspi_interrupt_master_example.bin"

run m4

on the master board. Wait for the following line to appear on the terminal connected to the
Cortex-M4:

Press "s" when spi slave is ready.

Now connect to the slave board and run

setenv m4_file "ecspi_interrupt_slave_example.bin"

run m4

If the demo kicks off on the slave board, press “s” on the terminal connected to the masters
board Cortex-M4. Now you should see data transmitted between the two boards.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 57

9.3.3 ecspi_polling

Description

In this example the master board transfers an array to the slave board, which is then send
back to the master. This demo uses the polling mode for achieving its goal.

Modifications made

Inserted function calls

ECSPI_SetDataInactiveState(BOARD_ECSPI_MASTER_BASEADDR,

BOARD_ECSPI_MASTER_CHANNEL, ecspiDataLineStayLow);

and

ECSPI_SetDataInactiveState(BOARD_ECSPI_SLAVE_BASEADDR,

 BOARD_ECSPI_SLAVE_CHANNEL, ecspiDataLineStayLow);

to the master and slave main.c to keep MOSI low between assertion of CS and starting the

clock.

Changes needed

See ecspi_interrupt for information on wiring the two boards.

Execute binary

First run

setenv m4_file "ecspi_polling_master_example.bin"

run m4

on the master board. Wait for the following line to appear on the terminal connected to the
Cortex-M4:

Press "s" when spi slave is ready.

Now connect to the slave board and run

setenv m4_file "ecspi_polling_slave_example.bin"

run m4

If the demo kicks off on the slave board, press “s” on the terminal connected to the masters
board Cortex-M4. Now you should see data transmitted between the two boards.

Attention

There is a bug inside the iMX6 which prevents the usage of burst lengths greater than [(32 *
n) + 1], so don't set it to more than 32!

Note 2: Maximum Burstlength

FreeRTOS examples

58 FreeRTOS on FSiMX6SX Boards

9.3.4 epit

Description

Simple application demonstrating two different EPIT instances (EPIT1 and EPIT2) catching
each other’s counter every 0.5 s.

Modifications made

None

Changes needed

None

Execute binary

Run

setenv m4_file "epit_example.bin"

run m4

to kick off the demo.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 59

9.3.5 flexcan_loopback_epit

Description

This example demonstrates the FlexCAN module loopback operating mode by sending data
from the tx message buffer to its own rx message buffer.

Modifications made

None

Changes needed

None

Execute binary

Run

setenv m4_file "flexcan_loopback_epit_example.bin"

run m4

FreeRTOS examples

60 FreeRTOS on FSiMX6SX Boards

9.3.6 flexcan_network_epit

Description

Like in the can_wakeup demo this one will send data packets over the CAN bus between

two boards.

Modifications made

None

Changes needed

Connect CAN_*_H to the corresponding CAN_*_H on the second board and do the same
with CAN_*_L.

efusa9x

Function Device
efusA9X Rev

1.2X
Function efus-SINTF Rev 1.30

CAN_B_TX FLEXCAN2 J4_35 CAN_B_H J22_55

CAN_B_RX FLEXCAN2 J4_37 CAN_B_L J22_56

PicoCOMA9X

Function Device
PicoCOMA9X

Rev 1.10
Function PC2-SINTF PCOMnet

CAN_A_TX FLEXCAN1 J2_30 CANH J10_25 J3_13

CAN_A_RX FLEXCAN1 J2_31 CANL J10_26 J3_14

PicoCoreMX6SX

Function Device PicoCoreMX6SX Rev 1.10 Function PCoreBBRGB Rec 1.20

CAN_A_TX FLEXCAN1 J1_12 CAN_1_H J6_4

CAN_A_RX FLEXCAN1 J1_10 CAN_1_L J6_3

You need to compile two versions of the software. The first one need

#define NODE 1

The other must be built with

#define NODE 2

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 61

Save each *.bin under a different name (like

flexcan_network_epit_example_b1.bin) before transferring them to the boards RAM.

Execute binary

Run

setenv m4_file "flexcan_network_epit_example_b1.bin"

run m4

on board 1 and

setenv m4_file "flexcan_network_epit_example_b2.bin"

run m4

on the other one.

FreeRTOS examples

62 FreeRTOS on FSiMX6SX Boards

9.3.7 gpio_imx

Description

This simple application shows how to use LED, buttons, etc. connected to the board via the
GPIO interface.

Modifications made

Added

configure_gpio_pin(BOARD_GPIO_LED_CONFIG);

Changes needed

Connect a LED and a KEY to the GPIOs.

efusa9x

Set as Function Device GPIO
efusA9X Rev

1.2X
efus-SINTF Rev

1.30

KEY I2C_B_IRQ I2C3_IRQn GPIO7_IO01 J4_86 J22_48

LED, BLINK PWM_A PWM5 GPIO3_IO24 J4_25 J22_32

PicoCOMA9X

Set as Function Device GPIO
PicoCOMA9X

Rev 1.10
PC2-SINTF PCOMnet

KEY SPI_MISO SPI1 GPIO2_IO11 J2_26 J10_3 J3_3

LED, BLINK SPI_MOSI SPI1 GPIO2_IO15 J2_29 J10_6 J3_6

PicoCoreMX6SX

Set as Function Device GPIO
PicoCoreMX6SX

Rev 1.10
PCoreBBRGB

Rev 1.20

KEY GPIO4_25 GPIO GPIO4_IO25 J1_26 J10_4

LED, BLINK GPIO4_26 GPIO GPIO4_IO26 J1_24 J10_3

Connect the KEY to 3.3V and the LED to GND.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 63

Execute binary

Run

setenv m4_file "gpio_imx_example.bin"

run m4

FreeRTOS examples

64 FreeRTOS on FSiMX6SX Boards

9.3.8 i2c_interrupt_extension_board_imx6sx

Description

A sample application which uses the FreeRTOS I2C API to let the board communicate as a
master with other i2c slaves. It will configure the I2C Extension Board via I2C and then start
a chaser light on it to check if the configuration was successful. This application uses inter-
rupts.

Modifications made

Used the i2c_interrupt_sensor_imx6sx as a template and changed the purpose and

functionality.

Changes needed

You have to connect the I2C pins on the Starterkit with the corresponding ones on the I2C
Extension Board.

efusa9x

Function Device efusA9X Rev 1.2X efus-SINTF Rev 1.30

I2C_B_SCL I2C3 J4_84 J22_46

I2C_B_SDA I2C3 J4_82 J22_45

PicoCOMA9X

Function Device PicoCOMA9X Rev 1.10 PC2-SINTF PCOMnet

I2C_A_SCL I2C4 J2_33 J10_10 J3_10

I2C_A_SDA I2C4 J2_32 J10_9 J3_9

PicoCoreMX6SX

Function Device PicoCoreMX6SX Rev 1.20 PCoreBBRGB Rec 1.20

I2C_A_SCL I2C4 J1_21 n.c.

I2C_A_SDA I2C4 J1_23 n.c.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 65

I2C-Extension-Board

Name Connector

I2C_SCL J1_11

I2C_SDA J1_10

Execute binary

Connect the pins as stated in “Changes needed”, then run

setenv m4_file

"i2c_imx_interrupt_extension_board_imx6sx_example.bin"

run m4

to kick of the demo. You will see the following screen and a chaser light on the I2C Extension
Board, which goes from the left to the right LED and then vice versa:

+++++++++++++++ I2C Send/Receive interrupt Example ++++++++++++++

This example will configure the i2c extension board through I2C

Bus

and run a chaser light to see if the i2c extension board was

properly configured.

[1]. Initialize the I2C module with initialize structure.

[2]. Clear input data polarity, so that it will be retained

[3]. Configure Ports as outputs

[4]. Set PCA9555 output port 1 to 0x1

[5]. Start chaser light

Example finished!!!

FreeRTOS examples

66 FreeRTOS on FSiMX6SX Boards

9.3.9 i2c_polling_extension_board_imx6sx

Description

A sample application which uses the FreeRTOS I2C API to let the board communicate as a
master with other i2c slaves. It will configure the I2C Extension Board via I2C and then start
a chaser light on it to check if the configuration was successful. This application uses polling.

Modifications made

Used the i2c_interrupt_sensor_imx6sx as a template and changed the purpose and

functionality.

Changes needed

See i2c_imx_interrupt_extension_board_imx6sx section “Changes Needed” for the

required pin connections for the I2C bus.

Execute binary

Connect the pins as stated in “Changes needed”, then run

setenv m4_file

"i2c_imx_polling_extension_board_imx6sx_example.bin"

run m4

to kick of the demo. You will see the following screen and a chaser light on the I2C Extension
Board, which goes from the left to the right LED and then vice versa:

+++++++++++++ I2C Send/Receive polling Example ++++++++++++++++

This example will configure the i2c extension board through I2C

Bus

and run a chaser light to see if the i2c extension board was

properly configured.

[1]. Initialize the I2C module with initialize structure.

[2]. Clear input data polarity, so that it will be retained

[3]. Configure Ports as outputs

[4]. Set PCA9555 output port 1 to 0x1

[5]. Start chaser light

Example finished!!!

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 67

9.3.10 i2c_interrupt_sensor_imx6sx

This example wasn't ported because the efusA9X does not provide any onboard sensors.

You can still find the demo in

not_tested/fsimx6sx/sensor_demo

but you should use the i2c_interrupt_extension_board_imx6sx with the I2C Exten-

sion Board from F&S instead.

FreeRTOS examples

68 FreeRTOS on FSiMX6SX Boards

9.3.11 i2c_polling_sensor_imx6sx

See “6.2.8 i2c_interrupt_sensor_imx6sx” for more information.

Use i2c_polling_extension_board_imx6sx instead.

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 69

9.3.12 uart_polling

Description

This example works similar to the hello_world one except that it only echos input and us-

es a polling interface.

Modifications made

None

Changes needed

None

Execute binary

Run

setenv m4_file "uart_imx_polling_example.bin"

run m4

FreeRTOS examples

70 FreeRTOS on FSiMX6SX Boards

9.3.13 uart_interrupt

Description

This example works similar to the hello_world one except that it only echos input and us-

es interrupts.

Modifications made

None

Changes needed

None

Execute binary

Run

setenv m4_file "uart_imx_interrupt_example.bin"

run m4

FreeRTOS examples

 FreeRTOS on FSiMX6SX Boards 71

9.3.14 wdog_imx

Description

Simple demo which enables WDOG with 1.5s timeout and an interrupt is triggered to refresh
the WDOG timer four times.

Modifications made

None

Changes needed

None

Execute binary

Run

setenv m4_file "wdog_imx_example.bin"

run m4

Appendix

72 FreeRTOS on FSiMX6SX Boards

10 Appendix

List of Figures

Figure 1: Register with F&S website ...18

Figure 2: Unlock software with the serial number ...19

Figure 3: I2C extension board jumpers ...43

List of Tables

Table 1: A9, M4 Memory map ..15

Table 2: Content of the created release directory ...21

Known Issues

As stated in the IMX6SXCE, Rev. 1 from 04/2016, there is an issue with some of the I.MX6
SoloX chips sold on the PicoCOMA9X. This prevents the usage of all RDC_* calls from the
FreeRTOS API, otherwise the Cortex-A9 or Cortex-M4 will hang.

This occur on chips with date code less than 1524. Apparently, there is no known solution to
this problem. Contact F&S for more information.

See
http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&
WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileEx
t=.pdf for a detailed description on this.

file://///FSSERVER3/Firma/Doku/Linux/FreeRTOS%20on%20F&S%20Boards/FreeRTOS_on_FSiMX6SX_Boards_V3.0_eng.docx%23_Toc27737524
file://///FSSERVER3/Firma/Doku/Linux/FreeRTOS%20on%20F&S%20Boards/FreeRTOS_on_FSiMX6SX_Boards_V3.0_eng.docx%23_Toc27737525
file://///FSSERVER3/Firma/Doku/Linux/FreeRTOS%20on%20F&S%20Boards/FreeRTOS_on_FSiMX6SX_Boards_V3.0_eng.docx%23_Toc27737526
http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/errata/IMX6SXCE.pdf?fasp=1&WT_TYPE=Errata&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

Appendix

 FreeRTOS on FSiMX6SX Boards 73

Third Party Agreement from Real Time Engineers Ltd.

Any FreeRTOS source code, whether modified or in its original release form, or whether in
whole or in part, can only be distributed by you under the terms of version 2 of the GNU
General Public License plus this exception. An independent module is a module which is not
derived from or based on FreeRTOS.

Clause 1: Linking FreeRTOS with other modules is making a combined work based on Fre-
eRTOS. Thus, the terms and conditions of the GNU General Public License V2 cover the
whole combination.

As a special exception, the copyright holders of FreeRTOS give you permission to link Fre-
eRTOS with independent modules to produce a statically linked executable, regardless of the
license terms of these independent modules, and to copy and distribute the resulting execut-
able under terms of your choice, provided that you also meet, for each linked independent
module, the terms and conditions of the license of that module. An independent module is a
module which is not derived from or based on FreeRTOS.

Clause 2: FreeRTOS may not be used for any competitive or comparative purpose, including
the publication of any form of run time or compile time metric, without the express permission
of Real Time Engineers Ltd. (this is the norm within the industry and is intended to ensure
information accuracy).

Appendix

74 FreeRTOS on FSiMX6SX Boards

Important Notice

The information in this publication has been carefully checked and is believed to be entirely
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the
information contained in this documentation.

F&S Elektronik Systeme reserves the right to make changes in its products or product speci-
fications or product documentation with the intent to improve function or design at any time
and without notice and is not required to update this documentation to reflect such changes.

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability
arising out of the documentation or use of any product and specifically disclaims any and all
liability, including without limitation any consequential or incidental damages.

Products are not designed, intended, or authorised for use as components in systems in-
tended for applications intended to support or sustain life, or for any other application in
which the failure of the product from F&S Elektronik Systeme could create a situation where
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Sys-
teme product for any such unintended or unauthorised application, the Buyer shall indemnify
and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney
fees arising out of, either directly or indirectly, any claim of personal injury or death that may
be associated with such unintended or unauthorised use, even if such claim alleges that F&S
Elektronik Systeme was negligent regarding the design or manufacture of said product.

