
F&S Update Tool 

CheckAutoStart and Update 
Windows Embedded Compact 

Version 1.03 
2015-08-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© F&S Elektronik Systeme GmbH 

Untere Waldplätze 23 

D-70569 Stuttgart 

Fon: +49(0)711-123722-0 

Fax: +49(0)711 – 123722-9

 

 



History 

Date V Platform A,M,R Chapter Description Au 

       

22-09-2014 1.01 All M * Changed to New Company CI JG 

18-05-2015 1.02 All M * Minor layout corrections HF 

07-05-2015 1.03 All M History Added new remark regarding Compact 2013 HF 

V  Version 

A,M,R Added, Modified, Removed 

Au Author  

 

 

Remark  

In the remaining document we’ll use the term “Windows CE” as generic reference to Win-
dows Embedded CE and Windows Embedded Compact. 

 

Remark  

The name of the application is Update.exe (Windows Embedded CE 6.0 and Windows Em-
bedded Compact 7) or Update2013.exe for Windows Embedded Compact 2013. 
In the remaining document we’ll use the term “Update” as generic reference for both applica-
tions. 

 

Remark  

In the remaining document we’ll use the term “NetDCU” as generic reference to all our Win-
dows Embedded CE and Windows Embedded Compact boards. This should also include 
armStone™, efus™, PicoCOM, PicoMOD and QBliss boards where appropriate. 



 

F&S UpdateTool and CheckAutoStart | 2 of 27 

 

Table of Contents 

History 1 

Table of Contents 2 

1 Introduction 3 

1.1 The Two-Stage Update Process ...................................................................... 4 

2 Check for Auto Start Program 5 

2.1 Boot Delay ...................................................................................................... 7 

2.2 Background Check for Auto Start .................................................................... 9 

3 The Update Program 10 

3.1 Update Program With Command Line “–t <n>” ........................................... 11 

3.2 Update Program With Empty Command Line ................................................ 12 

3.3 Backup Files and Rollback ............................................................................ 14 

3.4 File Names .................................................................................................... 15 

3.5 Installing a file ............................................................................................... 16 

3.6 Deleting a file ................................................................................................ 17 

3.7 Executing a program ..................................................................................... 18 

3.8 Setting the display pause .............................................................................. 19 

3.9 Setting a log file ............................................................................................. 20 

3.10 Repeating the Update Process ...................................................................... 23 

3.11 Resuming Interrupted Updates ...................................................................... 24 

3.12 Summary ....................................................................................................... 29 

4 Appendix 30 



 

F&S UpdateTool and CheckAutoStart | 3 of 27 

 

1 Introduction 

Many applications involving the NetDCU don’t require any input device like a mouse or key-
board. And updating the software installed on these NetDCU boards in the field is often not 
so easy. You most probably have to use a portable computer, write some special update 
software and then have the responsible technician doing the update on location. 

The main goal of our update software was to make this procedure as easy as possible. In 
fact our idea was to use a portable storage device, like USB Memory Stick, SD-Card or a 
PCMCIA Compact Flash Card (depending on the capabilities of the NetDCU), plug it in the 
running board and then the updating takes place automatically. And if anything fails during 
the update, the original state with the previous software is restored again, so that the contin-
uous operation of the board is guaranteed. This is so easy that even untrained personnel is 
capable of doing it with a few simple instructions. 

However when designing this concept, we encountered a problem that we had to solve first. 

When the NetDCU board is already running when we plug in the update storage device, then 
the main application is also currently executed. This means that all the files we want to up-

date may be under access. For example the .EXE file of the application itself is locked and 

can’t be exchanged then. 

On the other hand if we plug in the update storage device when the board is switched off 
and then start the board, it takes some time until Windows CE recognises the device – up to 
20 seconds or even more, depending on the device type. During this time the main applica-
tion again has enough time to start and we end up in the same situation as before. 



 

F&S UpdateTool and CheckAutoStart | 4 of 27 

 

1.1 The Two-Stage Update Process 

This brought us to the idea of using two stages for the update. 

 

Stage 1: 

Plug the update storage device into the NetDCU board. The device including the Update 

program is recognised and a boot delay is set. 

Stage 2: 

Reboot the board. Now the boot delay takes place and prohibits the main application to start. 

During this time the update storage device is recognised again and the Update program is 

started. Now the update can take place. 

 

So not only the update process is divided into two steps, also the software has been split in 
two parts: on one hand a resident part on the NetDCU, doing the boot delay and checking 

for the update storage device, and on the other hand the Update program on the update 

device itself, doing the actual file replacement. 

We called the resident part CheckAutoStart, as it can start any application automatically, 

not only the Update program. 



 

F&S UpdateTool and CheckAutoStart | 5 of 27 

 

2 Check for Auto Start Program 

This program is already included in newer NetDCU kernels. It provides two functions: 

1. Delay the boot process by the BootDelay value set in the registry. After the delay is 

over, let the main application start. 

2. By working silently in the background, check when new storage devices are introduced 

into the system. If there is a directory NetDCUx on this device and a program Auto-

Start.exe in there, start this program immediately. 

CheckAutoStart.exe is started via the registry key 

\HKEY_LOCAL_MACHINE\init 

This key tells Windows CE which programs are started automatically during the boot process 

and in which sequence. Every program is defined by value pair, Launch<n>  where <n> is a 

decimal number defining the sequence. The higher the number, the later the program is 
started. 

However Windows CE does not wait until the program is finished before starting the next 
one, because most of these programs will be running in parallel until the board is shut down. 
So immediately after spawning a process for one program, the next program is launched by 
spawning another process. 

So if a program depends on the existence of another program that has to be up and running, 

it has to set a depend entry. A Depend<n> entry lists all the launch numbers of those pro-

grams, on which the corresponding Launch<n> (with the same <n>) depends. As Windows 

CE uses binary values for the depend entries, these dependencies have to be given as hex-
adecimal values with two bytes each (low byte first). 

 

Example: 

Standard start-up sequence of the NetDCU8: 

Launch20 device.exe 

Launch30 gwes.exe 

Depend30 14 00 

Launch50 explorer.exe 

Depend50 14 00 1E 00 

Launch60 services.exe 

Depend60 14 00 

Launch99 ndcucfg.exe 

Depend99 1E 00 

Launch100 CheckAutoStart.exe 

Depend100 1E 00 

 



 

F&S UpdateTool and CheckAutoStart | 6 of 27 

 

This sequence starts the following programs: 

1. The devices subsystem device.exe with launch number 20, depending on no other 

program. 

2. The graphical subsystem gwes.exe with launch number 30, depending on program 

0x0014 = 20 = device.exe. 

3. The Windows Explorer explorer.exe with launch number 50, depending on programs 

0x0014 = 20 = device.exe and 0x001E = 30 = gwes.exe. 

4. The services subsystem services.exe with launch number 60, depending on program 

0x0014 = 20 = device.exe. 

5. The NetDCU configuration program ndcucfg.exe with launch number 99, depending 

on program 0x001E = 30 = gwes.exe. 

6. The auto start checker CheckAutoStart.exe with launch number 100, depending on 

program 0x001E = 30 = gwes.exe. 

 

Usually this list also shows the customer specific application launched under a number high-
er than 100. 

Now let’s examine the two functions of CheckAutoStart in more detail 

 



 

F&S UpdateTool and CheckAutoStart | 7 of 27 

 

2.1 Boot Delay 

When CheckAutoStart.exe starts, it looks at the registry entry 

\HKEY_LOCAL_MACHINE\System\CheckAutoStart\BootDelay 

and interprets the number there as seconds to delay. This means that all programs in 

\HKEY_LOCAL_MACHINE\init\ depending on CheckAutoStart.exe will not start until the delay is 

over. If this value is set to 0 or is not set at all, no delay takes place. 

During this delay time, any newly detected storage device is tested for the AutoStart.exe program, 

and if found, it is started without any command line arguments. After return the boot process is con-

tinued and CheckAutoStart.exe ends itself. 

It can take several seconds after start-up, until a removable storage device is detected by Windows 
CE, so just hoping that it is found before the main application starts, does not work. Therefore this 
artificial delay is required. It is mainly meant to avoid the start of the main application until the update 

storage device is recognised by Windows CE and the Update program can be started. Setting this 

delay manually is not required, as this is done automatically by the first stage of the Update program. 

CheckAutoStart.exe also resets the BootDelay registry value to 0, so that any further reboots of 

the board will work again completely as usual. 

 

Important: 

To be able to delay the execution of the main application, the main application must depend on 

CheckAutoStart.exe. This means it has to get a launch number for 

\HKEY_LOCAL_MACHINE\init\ higher than 100 and must list CheckAutStart.exe in the De-

pend entry. 

 

Example: 

The main application is called CurrentApplication.exe, is started as launch number 120 and 

depends on the graphical subsystem gwes.exe = 30 = 0x001E. 

Launch120 CurrentApplica-

tion.exe 

Depend120 1E 00 

 

To make this application updateable, this entry must be changed to also list CheckAutoStart.exe 

= 100 = 0x0064 in its dependencies. 

Launch120 CurrentApplica-

tion.exe 

Depend120 1E 00 64 00 

 

 

Remark: 

There are other methods of automatically starting an application than using 

\HKEY_LOCAL_MACHINE\init\. For example you can create a link to the .EXE file in the 

StartUp \FFSDISK. In fact now it is the Windows Explorer starting your application. And as 

you have seen, the Windows Explorer itself is started via the init registry key. So if you 

want to use this method, you have to start CheckAutoStart.exe before explorer.exe 

and you have to set explorer.exe to depend on CheckAutoStart.exe. 



 

F&S UpdateTool and CheckAutoStart | 8 of 27 

 

For example the following setting will do this for you: start as Launch40 and add 40 = 

0x0028 to Depend50.  

 

Launch20 device.exe 

Launch30 gwes.exe 

Depend30 14 00 

Launch40 CheckAutoStart.exe 

Depend40 1E 00 

Launch50 explorer.exe 

Depend50 14 00 1E 00 28 00 

Launch60 services.exe 

Depend60 14 00 

Launch99 ndcucfg.exe 

Depend99 1E 00 

 

 



 

F&S UpdateTool and CheckAutoStart | 9 of 27 

 

2.2 Background Check for Auto Start 

When the boot delay goes by without finding some program to automatically start, the boot 

process is continued. This means that any programs depending on CheckAutoStart.exe 

are now starting. This is the normal behaviour as most often the BootDelay registry value 

will be 0 and the whole boot delay step is skipped. 

The CheckAutoStart program puts itself in the background and keeps on looking for new 

storage devices. A new storage device means a change in the root directory, especially a 

new subdirectory with a flag FILE_ATTRIBUTE_TEMPORARY set. So every time the root di-

rectory has directory changes, CheckAutoStart is notified and checks all directories hav-

ing this flag set for a file AutoStart.exe in a subdirectory named after the platform. This 

platform name is taken from the registry entry \HKEY_LOCAL_MACHINE\Platform\Name 

and usually carries the name of the board, i.e. efusA9, NetDCU8, etc. 

This program is then started with a command line containing 

  -t <n> 

where <n> is the current boot delay (usually 0). This means the program was called after a 

delay of <n> seconds has timed out earlier. 

Passing the delay time to the started program allows it to react to unexpected long recogni-

tion times. For example the Update program increases the BootDelay value by another 

20 seconds, if it was not recognised in time during the current boot delay stage. 

 

 

Example: 

An USB Memory Stick is plugged into the NetDCU6. This creates a subdirectory “\Hard 

Disk”. So the program searched for is \Hard Disk\NetDCU6\AutoStart.exe. 

If there was no current boot delay, this program is called with command line “–t 0”. If the 

current boot delay was 20 seconds, but it went over without detecting any AutoStart pro-

gram, it is now called with command line “-t 20”. And so on. 

 

Please note: 

Every time there is a change of subdirectories in the root directory, all subdirectories having 

the FILE_ATTRIBUTE_ TEMPORARY flag set are searched again, no matter if they existed 

already before or not. So continuously creating and deleting directories directly under \ is no 

good idea, as it triggers this search every time. In real life we don’t expect this to be a prob-

lem. Creating normal files in \ also doesn’t matter. 

After CheckAutoStart has executed the AutoStart.exe program, it really ends itself. 

So from then on, newly plugged in storage devices will not automatically be recognised any-

more. This is to avoid triggering the same AutoStart.exe program twice when other direc-

tory changes happen in the root directory. 



 

F&S UpdateTool and CheckAutoStart | 10 of 27 

 

3 The Update Program 

As we have seen before, the Update program works hand in hand with the CheckAuto-

Start program. It is automatically started by CheckAutoStart and therefore must be 

named AutoStart.exe and has to reside on the removable storage device used for the 

update procedure. However we’ll still call it the “Update program” throughout the rest of this 

document to avoid confusion with any other AutoStart.exe program that may be present. 

There are two situations when the Update program can be called: 

1. When the board is in normal operation mode. Then we’ll get a command line “-t <n>” 

where <n> specifies a timed out boot delay. Then we can do nothing but set a new 

BootDelay value and ask for reboot. 

2. When the board is in the boot delay stage. Then we’ll get an empty command line and 
we know that the update procedure can take place now. 

Let’s look at these two situations in more detail. 



 

F&S UpdateTool and CheckAutoStart | 11 of 27 

 

3.1 Update Program With Command Line “–t <n>” 

The board is in normal operation mode. Especially the main application is running. We can’t 
do the update as some of the files to replace might be locked. This is the first stage of the 
two stage update process. 

In this case, the Update program simply increments the delay value given on the command 

line by 20 seconds, stores this value in the registry entry 

\HKEY_LOCAL_MACHINE\System\CheckAutoStart\BootDelay 

and shows a dialog box requesting the user to shut down the current application and reboot 

the board. If the dialog box is closed, the Update program ends itself. 

 



 

F&S UpdateTool and CheckAutoStart | 12 of 27 

 

3.2 Update Program With Empty Command Line 

When the Update program sees an empty command line, it was either called manually, or 

during the second stage, the boot delay stage, of the two stage update process. Then the 
actual update procedure may start. 

The update is controlled by an update script that has to reside in the same directory on the 

storage device as the Update program itself and has to be called Update.script. Each 

line of the script contains one command to be executed. The command is identified by a sin-
gle letter, followed by one or more parameters. 

1. Installing a file: I 

This command installs a new file on the board. It might replace an existing file with a 
newer version. 

2. Deleting a file: D 

This command removes a file from the board when it is no longer persistent in the new 
software version. 

3. Executing a program: X 

This command executes a program that provides a part of the update process. 

4. Setting a display pause: P 

This command sets the minimum time how long every update action remains visible on 
the display. 

5. Setting a log file: L 

Sets the name of a file where the update actions are logged to be reviewed later. 

6. Comments: # 

A comment line is completely ignored by the Update program. Empty lines in the script 

file are also ignored. 

Using these commands you create a script file telling step by step how to do the update. 

 

This is an example how an update script may look like. 

# Sample Update Script 

# This script updates a MyApp software to V2.7 

 

# Open log file on update storage device 

L Update-V2.7.log 

 

# Run as fast as possible 

P 0 

 

# Delete some old log file 

D \FFSDISK\MyApp.log 

 

# Install the new application program 

I MyApp-V2.7.exe \FFSDISK\MyApp.exe 

 

# Install two data files 

I MyData1-V2.7.bin \FFSDISK\MyData1.bin 

I MyData2-V2.7.xyz \FFSDISK\MyData2.xyz 

 



 

F&S UpdateTool and CheckAutoStart | 13 of 27 

 

# Install a new help file 

I MyApp-V2.7.hlp \FFSDISK\MayApp.hlp 



 

F&S UpdateTool and CheckAutoStart | 14 of 27 

 

3.3 Backup Files and Rollback 

An important aspect of this Update program is the concept of backup files. As we’ve already 

said in the introduction, it is vital that the board is left in a working state after doing the up-
date. So if the update fails anywhere, the previous state of the software should be restored 
so that at least the old software version can resume work. 

This requires that we save the previous state somehow, and this is where backup files come 

into play. The idea is rather simple. Before installing a new file with I or deleting a file with D, 

the old version of the file is moved to a save position. Usually it is only renamed to make 
place for the new file, but you can explicitly give a path and file name where this safety copy, 
the so called backup file, will be stored. For example it can even be copied temporary to the 
update device. 

When the whole update procedure succeeds without error, all these backup files are simply 
deleted. They are not required anymore. But if there happens some fatal error somewhere 
later in the update process, then all these backup files can be restored to their original place. 
This procedure is called “rollback. After rollback, the board is again in the previous state and 
the old software should work again. 

This shows us how the Update program works: 

 

1) Scan the script file to check for syntax errors. It’s also verified that all new files really ex-
ist on the update device. 

2) Do the update process, installing new files and deleting old files. 

3)  

a) Update process succeeds: Remove all backup files 

b) Update process fails: Do rollback and restore old files 

 

When doing rollback, it is important to bring the backup files back in the reverse order they 
were saved, because cyclic replacements of files can only be undone correctly in this way. 
And to keep the final step consistent, we also delete the backup files in reverse order in case 
of success. 

 



 

F&S UpdateTool and CheckAutoStart | 15 of 27 

 

3.4 File Names 

When using file names in the update script, it is possible to use absolute or relative paths. 

An absolute path starts with character \ and refers to a path starting at the root directory, 

most probably the main flash memory located in \FFSDISK A relative path must not start 

with \ and refers to files relative to the current update directory on the update storage de-

vice. 

You can also use / instead of \ as directory delimiter. If a path contains blanks, you have to 

enclose it in double quotes. 

 

Examples: 

Here and in all following examples we assume the update is done from an SD Card on a 

NetDCU8 resulting in the path “\Storage Card\NetDCU8”. Then the following file name 

mapping takes place. 

 

Given file name Final file name used                    

\FFSDISK\MyFile "\FFSDISK\MyFile" 

\MyFile "\MyFile" 

MyFile "\Storage Card\NetDCU8\MyFile" 

"My File" "\Storage Card\NetDCU8\My File" 

"Storage Card\MyFile" "\Storage Card\MyFile" 

 

It is possible to give the empty file name "" as backup file name. But please note that the 

old file won’t get a backup then and definitely can’t be restored during rollback. If update 
fails, this file is irretrievably lost. So do this at your own risk! 



 

F&S UpdateTool and CheckAutoStart | 16 of 27 

 

3.5 Installing a file 

Syntax: 

I <source> <target> [<backup>] 

 

Parameters: 

<source> File name of the source file (usually on the update storage device) 

<target> File name of the target file (usually in \FFSDISK on the NetDCU) 

<backup> File name of the backup file where the old target file is stored (optional). If not 

given, the default backup file name is <target>.bak, i.e. the target file 

name extended by .bak. 

 

Description: 

If source file <source> and target file <target> are identical (have the same content), no 

action is taken. Otherwise if the target file <target> exists, it is moved to the backup file 

name <backup>. Then in any case the source file <source> is copied to the target file 

name <target>. 

 

Example 1: 

I  New.exe  \FFSDISK\CurrentApplication.exe 

Install the new file "\Storage Card\NetDCU8\New.exe" as 

"\FFSDISK\CurrentApplication.exe" on the board. If this file exists, it is stored for 

backup under the name "\FFSDISK\CurrentApplication.exe.bak". 

 

Example 2: 

I  NewData  \FFSDISK\Data  OldData.mybak 

Install the new file "\Storage Card\NetDCU8\NewData" as "\FFSDISK\Data" on the 

NetDCU. If this file exists, it is copied to the update storage device for backup under the 

name "\Storage Card\NetDCU8\OldData.mybak". 

 

Action during rollback: 

The current target file <target> is deleted and the backup file <backup> is moved back to 

the target file name <target>. 



 

F&S UpdateTool and CheckAutoStart | 17 of 27 

 

3.6 Deleting a file 

Syntax: 

D <target> [<backup>] 

 

Parameters: 

<target> File name of the target file (usually in \FFSDISK on the NetDCU) 

<backup> File name of the backup file where the old target file is stored (optional). If not 

given, the default backup file name is <target>.bak, i.e. the target file 

name extended by .bak. 

 

Description: 

If the target file <target> exists, it is moved to the backup file name <backup>. 

 

Example: 

D  \FFSDISK\Logfile.txt 

Delete the file "\FFSDISK\Logfile.txt" while using the name 

"\FFSDISK\Logfile.txt.bak" as backup name. 

 

Action during rollback: 

The backup file <backup> is moved back to the target file name <target>. 



 

F&S UpdateTool and CheckAutoStart | 18 of 27 

 

3.7 Executing a program 

Syntax: 

X '<dcommand>' ['<ucommand>'] 

 

Parameters: 

<dcommand> Command line for the DO program, enclosed in single quotes. This program 

does the update part. 

<ucommand> Command line for the UNDO program, enclosed in single quotes. This program 

does the rollback part in case of an update failure. 

 

Description: 

During installation, the DO program is called with the dcommand command line. If the pro-

gram returns zero, it is assumed to have succeeded and the installation process continues 
with the next script line. If the program returns a non-zero value, it is supposed to have 
failed, and the rollback procedure is started. 

The second command line, the UNDO program ucommand, is only executed, when the instal-

lation fails at some point (now or later) and the rollback process comes alive. This program 

should undo everything that was done in the DO program. 

Even as the command lines are enclosed in single quotes '...', the program name (the first 

argument in each command line) is expanded as in every other file, i.e. the path of the up-

date device is prepended if the file does not start with \ or / (see page 15). In addition the 

program extension (.exe, .bat, etc.) is automatically appended if not specified. 

But please note that the Update program does not know whether other arguments in the 

command line string are file names or not. Therefore it cannot expand other arguments in 
the same way. Either this has to be done in the called program, or the files have to be given 
with the absolute paths already in the script. 

Using single quotes to enclose the command line allows the usage of double quotes inside 
the arguments themselves, e.g. to enclose an argument that includes a space character. 

  

Example: 

X 'writeboot /e:eboot8_117.nb0 /a' 'writeboot /e:eboot8_116.nb0 /a' 

Call program writeboot.exe located on the update device to update the boot loader to 

the newer version V117. If the installation fails at some point, call writeboot.exe again 

and restore the older boot loader V116. 

 

Action during rollback: 

The UNDO program is called with the ucommand command line. This program should undo 

everything that the DO program did during install. A return value of zero reports success, a 

non-zero value reports failure. 

If no UNDO program is given, the rollback cannot re-establish the previous state of this part of 

the installation. 

 



 

F&S UpdateTool and CheckAutoStart | 19 of 27 

 

3.8 Setting the display pause 

Syntax: 

P <time> 

 

Parameters: 

<time> Minimum time to show update actions (in ms) 

 

Description: 

Every action of the update process is shown in a dialog box on the display. By default, every 
command is shown at least one second. If you give this command, all further actions will be 
shown for at least the new time. 

You can give this command in the script file as often as you like. For example to delay im-
portant commands longer than unimportant ones. 

Please note that every command can take more than one action to complete. For example a 

file installation with I can take up to six separate actions that are shown separately: com-

pare source and target, copy target to backup, rename backup, delete target, copy source to 
target, rename target. 

  

Examples: 

P 0 

This processes the update script as fast as possible, not waiting for output at all. 

P 4500 

Wait at least 4.5 seconds before showing the next action. 



 

F&S UpdateTool and CheckAutoStart | 20 of 27 

 

3.9 Setting a log file 

Syntax: 

L <logfile> 

 

Parameters: 

<logfile> Log file name where update actions are stored 

 

Description: 

The steps of the update process can also be logged to a file to be reviewed later. Every ac-
tion is stored as a couple of lines showing the type of action, the script line number, the 
“from” and “to” file names and the result of the operation. 

As already mentioned, a command may be subdivided into several actions. Two actions are 
separated in the log file by a blank line, actions of different command lines are separated by 

a string of dashes “-----“. 

Usually you’ll only give one log file command at the beginning of the script file. Every new L 

command found later in the script closes the current log file and opens the new one. 

Please note that the syntax check of the script file and the existence check of the source 
files is not logged. Logging starts when the main update process begins. So errors in this 
first step of the update can only be seen on the display. 

Every start of the update procedure will start the log file anew. Please keep this in mind 
when you restart an interrupted update process or you’ll overwrite the log file of the first part 
of the update. 

 

Example: 

L Update.log 

Use "\Storage Card\NetDCU8\Update.log" for storing the log file. 

The resulting log file may look like this: 

# Log file created by NetDCU Update V1.0 

 

Update: Checking file 

Script line: 6 

File: \FFSDISK\Logfile.txt 

Result: Different, doing update 

 

Update: Renaming file 

Script line: 6 

From: \FFSDISK\Logfile.txt 

To: \FFSDISK\Logfile.txt.bak 

Result: OK 



 

F&S UpdateTool and CheckAutoStart | 21 of 27 

 

 

----- 

 

Update: Comparing source and target 

Script line: 7 

From: \Hard Disk\NetDCU8\NewApplication.exe 

To: \FFSDISK\CurrentApplication.exe 

Result: Different, doing update 

 

Update: Renaming file 

Script line: 7 

From: \FFSDISK\CurrentApplication.exe 

To: \FFSDISK\CurrentApplication.exe.bak 

Result: OK 

Update: Copying file 

Script line: 7 

From: \Hard Disk\NetDCU8\NewApplication.exe 

To: \FFSDISK\CurrentApplication.exe.tmp 

Result: OK 

 

Update: Renaming file 

Script line: 7 

From: \FFSDISK\CurrentApplication.exe.tmp 

To: \FFSDISK\CurrentApplication.exe 

Result: OK 

 

----- 

 

Update: Comparing source and target 

Script line: 8 

From: \Hard Disk\NetDCU8\NewData.bin 

To: \FFSDISK\Data.bin 

Result: Different, doing update 

 

Update: Renaming file 

Script line: 8 

From: \FFSDISK\Data.bin 



 

F&S UpdateTool and CheckAutoStart | 22 of 27 

 

To: \FFSDISK\OldData.mybak 

Result: OK 

 

Update: Copying file 

Script line: 8 

From: \Hard Disk\NetDCU8\NewData.bin 

To: \FFSDISK\Data.bin.tmp 

Result: OK 

 

Update: Renaming file 

Script line: 8 

From: \FFSDISK\Data.bin.tmp 

To: \FFSDISK\Data.bin 

Result: OK 

 

----- 

 

Update: Deleting backup file 

Script line: 8 

File: \FFSDISK\OldData.mybak 

Result: OK 

 

Update: Deleting backup file 

Script line: 7 

File: \FFSDISK\CurrentApplication.exe.bak 

Result: OK 

 

Update: Deleting backup file 

Script line: 6 

File: \FFSDISK\Logfile.txt.bak 

Result: OK 



 

F&S UpdateTool and CheckAutoStart | 23 of 27 

 

3.10 Repeating the Update Process 

There is no danger in repeating the update procedure on a NetDCU board that was already 
updated previously. Before a file is replaced, it is compared to the new file on the update 
storage device. If they are identical, having exactly the same content, the file is assumed to 
be up-to-date and no new update takes place. 

So if an already updated NetDCU is updated again, the log file will simply show that all files 
were up-to-date. 



 

F&S UpdateTool and CheckAutoStart | 24 of 27 

 

3.11 Resuming Interrupted Updates 

If you have inserted the update storage device inadvertently into the NetDCU, it immediately 

activates the BootDelay. But don’t be afraid, you can safely pull out the storage device and 

nothing happens. On the next reboot, the boot delay stage will take place, but as the update 

storage device is not present anymore, no Update program is found and the BootDelay 

will simply count down and time out. Then the main application will start again and the board 
will behave as if nothing had happened. 

So it is not necessary to interrupt the update process by a forced removing of the update 

storage device during update. However the concept of this Update mechanism is designed 

in a way that it also allows to resume an interrupted update, for example after an unexpected 
power failure while updating. 

To achieve this goal, it is important to be able to decide if a file copy was successfully com-
pleted or only done in part. This is achieved by copying to temporary file names. 

Copying a file is a rather time consuming action. It may take several seconds or even 
minutes, depending on the size of the file. Renaming a file on the other hand is a rather short 
operation that can be seen as an atomic file operation. 

So instead of directly copying a file to its target name, we first copy it to a temporary file on 

the target device. The temporary file name is built by appending .tmp to the target file 

name. If the copy succeeds, we can immediately rename the file to its final target name and 
are done. 

The advantage of this procedure is, that when we later resume such an interrupted copy 
procedure, we can immediately say if the copy was complete or not. If the target file exists, 
the copy was complete. If the target file does not exist and instead only the temporary file 
exists, the copying was incomplete and has to be resumed or redone. 

 

Example: 

I NewData.bin \FFSDISK\Data.bin 

After having created the backup file, the final copy process uses these steps: 

1. Copy "\Storage Card\NetDCU8\NewData.bin" to "\FFSDISK\Data.bin.tmp" 

2. Rename temporary file "\FFSDISK\Data.bin.tmp" to the final target file 

"\FFSDISK\Data.bin". 

These two actions can be seen as separate steps in the dialog box on the display or in the 
log file. The same copy procedure is used when creating the backup file and the backup file 
is on a different device than the target file. 

 

So when doing the update, the actions taken depend on the situation found when starting 
the command. We consider at least the following cases: 

 

Install I: 

1. Target exists, source and target are identical 
Update already succeeded, do nothing. 

2. Target exists, there is no backup 
Move target to backup, copy source to target. 



 

F&S UpdateTool and CheckAutoStart | 25 of 27 

 

3. Target exists, backup exists 
Update was interrupted earlier after having copied the file to the backup but before delet-
ing the target. Resume by deleting target and then copy source to target. 

4. Target does not exist, there is no backup 
The file did not exist before. Copy source to target. 

5. Target does not exist, backup exists 
Update was interrupted earlier after having moved the target to the backup. Resume by 
copying source to target.



 

F&S UpdateTool and CheckAutoStart | 26 of 27 

 

 

 

Delete D: 

1. Target exists, there is no backup 
Move target to backup 

2. Target exists, backup exists 
Update was interrupted earlier after having copied the file to the backup but before delet-
ing the target. Just delete the target. 

3. Target does not exist, there is no backup 
This file never existed, so don’t do anything. 

4. Target does not exist, backup exists 
Update was interrupted earlier after having moved the file to the backup. So this step is 
already complete, resume by doing nothing. 

 

Execute X: 

There is no way to tell if the program already succeeded earlier or not. The program will be 
called in any case. Therefore the program itself has to decide if the update step still needs to 
take place or is already done. 

 

During rollback, the action also depends on the situation: 

 

Install I: 

1. Target exists, backup exists 
No error in this file. Delete target, move backup to target. 

2. Target does not exist, backup exists 
The error happened after having moved the target to the backup. Resume by moving 
backup back to target. 

3. Target does not exist, backup does not exist. 
Target never existed, the error happened while copying the source to the target. Nothing 
to do. 

 

Delete D: 

1. Target exists, backup exists 
The error happened after having copied the file to the backup but before deleting the tar-
get. Resume by deleting target, then move backup to target. 

2. Target does not exist, backup exists 
No error in this file. Move backup to target. 

3. Target does not exist, backup does not exist 
This file never existed. Nothing to do. 

In fact, the real analysis of the situation as implemented in the Update program is still more 

complicated! 

 



 

F&S UpdateTool and CheckAutoStart | 27 of 27 

 

Execute X: 

The UNDO program will be called in any case. Therefore the program itself has to decide how 

to do the rollback. 



 

F&S UpdateTool and CheckAutoStart | 28 of 27 

 

 

Please note: 

Even if this whole update concept allows resuming after interrupts, this is only meant as an 
emergency recovery from an accidental maloperation or unexpected power loss. It is not 
meant as a normal way of doing the update in steps. We can never guarantee that interrupt-
ed file operations will keep a working and consistent file system. The file system may be 
damaged to a point beyond repair in such a case, so that only complete erasure of the flash 
memory and a new download of the Windows CE kernel can revive the board. So please 

avoid interrupting the Update program whenever possible. 

But when the update was interrupted, it has to be resumed after the next start of the NetDCU 

board. Because of this the Update program keeps the BootDelay value in the registry ac-

tive until the whole update procedure is completely done. Then the value is reset to 0. 



 

F&S UpdateTool and CheckAutoStart | 29 of 27 

 

3.12 Summary 

Let’s summarise the steps for doing a software update on a NetDCU using the mechanism 
presented in this document. 

These steps are required that your NetDCU board is capable of doing an automatic update: 

 Verify that CheckAutoStart.exe is started in init. 

 Make sure that your application depends on CheckAutoStart.exe when starting. 

Now the steps to prepare a storage device for update. We assume a NetDCU8 here. 

 Create a directory NetDCU8 on your update storage device and put the Update program 

there under the name AutoStart.exe. 

 Write an update script with all the commands to execute when doing the update. Put it as 

Update.script in the NetDCU8 directory on your update storage device. 

 Put all the required new files of your application in the NetDCU8 directory on your update 

storage device. You can use subdirectories as you like. 

These steps are required to perform the actual update: 

 Plug the update storage device in the running NetDCU. Wait until requested to reboot 
the board. 

 Shut down the main application and reboot the board. The update takes place now. 

 When requested after the update is done, remove the update storage device and reboot 
the board. 

 



 

F&S UpdateTool and CheckAutoStart | 30 of 27 

 

4 Appendix 

Important Notice 

The information in this publication has been carefully checked and is believed to be entirely 
accurate at the time of publication. F&S Elektronik Systeme assumes no responsibility, how-
ever, for possible errors or omissions, or for any consequences resulting from the use of the 
information contained in this documentation. 

F&S Elektronik Systeme reserves the right to make changes in its products or product speci-
fications or product documentation with the intent to improve function or design at any time 
and without notice and is not required to update this documentation to reflect such changes. 

F&S Elektronik Systeme makes no warranty or guarantee regarding the suitability of its 
products for any particular purpose, nor does F&S Elektronik Systeme assume any liability 
arising out of the documentation or use of any product and specifically disclaims any and all 
liability, including without limitation any consequential or incidental damages. 

Specific testing of all parameters of each device is not necessarily performed unless re-
quired by law or regulation.  

Products are not designed, intended, or authorized for use as components in systems in-
tended for applications intended to support or sustain life, or for any other application in 
which the failure of the product from F&S Elektronik Systeme could create a situation where 
personal injury or death may occur. Should the Buyer purchase or use a F&S Elektronik Sys-
teme product for any such unintended or unauthorized application, the Buyer shall indemnify 
and hold F&S Elektronik Systeme and its officers, employees, subsidiaries, affiliates, and 
distributors harmless against all claims, costs, damages, expenses, and reasonable attorney 
fees arising out of, either directly or indirectly, any claim of personal injury or death that may 
be associated with such unintended or unauthorized use, even if such claim alleges that 
F&S Elektronik Systeme was negligent regarding the design or manufacture of said product. 

Specifications are subject to change without notice. 

Warranty Terms 

Hardware Warranties  

F&S guarantees hardware products against defects in workmanship and material for a peri-
od of two (2) years from the date of shipment. Your sole remedy and F&S’s sole liability shall 
be for F&S, at its sole discretion, to either repair or replace the defective hardware product at 
no charge or to refund the purchase price. Shipment costs in both directions are the respon-
sibility of the customer. This warranty is void if the hardware product has been altered or 
damaged by accident, misuse or abuse.  

Software Warranties  

Software is provided “AS IS”. F&S makes no warranties, either express or implied, with re-
gard to the software object code or software source code either or with respect to any third 
party materials or intellectual property obtained from third parties. F&S makes no warranty 
that the software is useable or fit for any particular purpose. This warranty replaces all other 
warranties written or unwritten. F&S expressly disclaims any such warranties. In no case 
shall F&S be liable for any consequential damages. 



 

F&S UpdateTool and CheckAutoStart | 31 of 27 

 

 

Disclaimer of Warranty  

THIS WARRANTY IS MADE IN PLACE OF ANY OTHER WARRANTY, WHETHER 
EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC 
PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF 
ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE 
REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF 
ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.  

 

Limitation on Liability  

UNDER NO CIRCUMSTANCES SHALL F&S BE LIABLE FOR ANY LOSS, DAMAGE OR 
EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. 
IN NO EVENT SHALL F&S  BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL 
DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY 
PRODUCT. BY ORDERING THE PRODUCT, THE CUSTOMER APPROVES THAT THE 
F&S PRODUCT, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS 
MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS 

 


	History
	Table of Contents
	1  Introduction
	1.1  The Two-Stage Update Process

	2  Check for Auto Start Program
	2.1  Boot Delay
	2.2  Background Check for Auto Start

	3  The Update Program
	3.1  Update Program With Command Line “–t <n>”
	3.2  Update Program With Empty Command Line
	3.3  Backup Files and Rollback
	3.4  File Names
	3.5  Installing a file
	3.6  Deleting a file
	3.7  Executing a program
	3.8  Setting the display pause
	3.9  Setting a log file
	3.10  Repeating the Update Process
	3.11  Resuming Interrupted Updates
	3.12  Summary

	4 Appendix
	Important Notice
	Warranty Terms


