
Failsafe Flash File System (F3S) F&S Elektronik Systeme GmbH

F3S

The transaction-based, power-fail-safe

file system for WindowsCE

F & S Elektronik Systeme GmbH

Untere Waldplätze 23

70569 Stuttgart

Phone: +49(0)711/123722-0 Fax: +49(0)711/123722-99

Failsafe Flash File System (F3S) F&S Elektronik Systeme GmbH

Motivation for the Innovation:
A safe and consistent data management is indispensable in a lot of areas where em-
bedded systems are used, like medical applications for example. The operating sys-
tem WindowsCE from Microsoft is shipped with the FAT file system for persistent da-
ta storage. However it has been shown in a lot of cases, that the FAT file system
can’t manage this requirement sufficiently. Quite often corrupted data is responsible
for malfunctions and sometimes even system failures.

For this reason, F&S has decided to develop a new, transaction-safe file system –
the Failsafe Flash File System (F3S). It is especially designed for usage in embedded
systems and features an economical and efficient usage of the available system re-
sources. Because of the unique, transaction-based concept, it is fundamentally ro-
bust against unexpected electrical power outages. F3S is capable not only to guaran-
tee that meta-information won’t be corrupted, like this is possible on FAT file systems
when the allocation table gets damaged, it even ensures transaction-safety on file
level. Modified file data will be committed not until the operation is finished complete-
ly. The point of completion can be defined in an application. In the easiest case by
closing the file-handle. If the operation is aborted, the state before the modification
was started will be restored automatically. This offers the possibility to save sensible
data safely and persistently.

Contrary to conventional file systems for WindowsCE, F3S is targeted to take advan-
tage of NAND flash memory characteristics. Thereby the physically required write
operations are minimized. This mainly improves the transfer rate on write operations
dramatically. At the same time this reduces wearing of flash memory and thus en-
hances its lifetime, which is limited anyway. In addition, F3S is equipped with a very
efficient Garbage-Collector that resolves principle-occurred fragmentations.

F3S is implemented in C++ using object-oriented methods. As a result of the very
modular architecture it is portable to other platforms very easily. Thus it is available
for all single board computers of the NetDCU family (WindowsCE 4.2/5/6) from F&S
by now.

The F3S file system is maintained and continuously improved. Additionally F&S of-
fers a qualified and customer-oriented support.

Failsafe Flash File System (F3S) F&S Elektronik Systeme GmbH

Description:

The company F&S Elektronik Systeme GmbH has specialized in developing embed-
ded PCs used to drive graphical displays. These single board computers are
equipped with WindowsCE and therefore only include the FAT file system for persis-
tent data storage. Especially in environments where sensible data is used, a safe and
consistent data management is indispensable. However it has been shown in a lot of
cases, that the FAT file system can’t ensure this requirement sufficiently. Quite often
corrupted data is responsible for malfunctions and sometimes even system failures.
Because of this, F&S has decided to develop a new transactionsafe file system, that
is being applied in a lot of systems in the meantime – the Failsafe Flash File System
(F3S).

The FAT file system uses an allocation table to map file data or contents of directo-
ries to their position on the storage medium. This enables a very simple data search.
But after a crash that appears while an operation is in progress, there is always the
danger of corrupted (meta)-data. Even if writing one data block is atomic, most op-
erations, like creating or deleting a file, are causing several physical write operations.
If the electrical power outage occurs while performing a write operation, file data gets
corrupted for sure. If modifying the allocation table fails, even complete files or direc-
tory structures can get lost. So the goal of development was a file system that en-
sures the integrity of meta-data and also guarantees an effective protection on file
level.

Conventional file systems modify stored data at their current location. If a data block
that holds file or meta data is modified, this action will be performed at exactly the
same physical location. Due to restricted access of flash memories, this isn’t possible
directly. There’s the need of an additional software layer, implemented between the
regular flash driver and the file system – the so called Flash Abstraction Layer (FAL)
or Flash Translation Layer (FTL) (see Figure 1). This enables the file system to ac-
cess the flash memory like a regular block device. The FTL performs a so called
block-mapping. Read and write operation are based on logical block addresses. The
size of a data block typically corresponds to the size of a flash page. Writing a modi-
fied data block will not change the current physical storage cell. Instead of that, the
modified data block will be written to a free physical location. Afterwards, the internal
mapping between logical and physical address is adapted.

The fact that each flash page can’t be overwritten directly, already supports the de-
velopment of transaction safety on file level, as old and new file data are both stored
separately in flash for a short period of time. Additionally each page of a flash mem-
ory includes a special area (spare-page) that offers the possibility to store meta in-
formation on flash memory directly. To establish a safety in file level, it is very useful
to store the file membership of each page in flash directly. Based on these keynotes
the file system F3S was developed.

Generally expressed, transaction safety means that the transition from one stable
state to the next stable state only can be performed either completely or not at all. If a
transaction isn’t completed, the original state will be restored. Related to file contents,
a transaction is committed under F3S if one of the following conditions is entered:

• The file is closed: CloseFile()

• All used file buffers should be flushed: FlushFileBuffers()

• If the WRITE_THROUGH-Flag is set and the write operation is finished

Failsafe Flash File System (F3S) F&S Elektronik Systeme GmbH

If the system crashes before reaching any of these conditions, modified data is lost
and the original file content will be recovered.

F3S is a log-structured file system. It carries the meta-journaling, known from NTFS
or Ext3/4 to the extreme. The journal is the file system. Data blocks stored in flash
memory are not mapped to logical block addresses, instead they are mapped directly
to the corresponding file system object (file or directory). This leads to two fundamen-
tal benefits compared to conventional file systems:

1. The physical characteristics of flash memory can be utilized directly.

2. Losing data or even directory structures can be avoided by not storing alloca-
tion tables or other structures in flash memory.

F3S doesn’t store the directory structure in a central structure like file systems for
hard discs, as this generally results in inconsistency problems. Instead of this it uses
the spare-area of the particular flash page to store all needed meta-information. The
exact directory structure is copied to a linked data structure in main memory. There is
one object for each file system object, which points to the directory it currently resides
in. Several objects on the same hierarchical level are organized as a linked list. With
the assistance of this structure, each file system object can be found by giving the
pathname. As the relation of an object, or more precisely a reference to the higher
ranked directory object, is stored in the spare-page, the correct directory structure
can be rebuilt anytime. And because of the atomicity of writing a page, the integrity of
the directory structure can be guaranteed in each situation.

To even ensure the consistency of file data, F3S features an additional unique con-
cept. On committing a transaction, a special data block will be written that validates
all file modifications before. Thus a transition of modified file data consists of one
atomic operation. Any interrupted transaction will be detected next time when mount-
ing the partition, and the last valid state will be recovered automatically.

Using a table that is stored in flash is
disclaimed deliberately avoided. Each
data block hence is stored in a B-tree
like structure within the corresponding
file system object in main memory and
will be established simultaneously to
the directory structure during mount
process. In difference to the FAL,
mapping of data blocks is not based
on logical block addresses. Instead
each flash-page is related to file con-
tent directly. Thus the mapping is an
inherent part of the file system itself.
Referring to transaction-safety, this is
an essential benefit as it enables a
systematic data caching on file level.
Cached data blocks are identifiable
directly.

As a result of the WindowsCE architec-
ture, file systems that are especially de-
veloped for flash memories can’t be adopted directly. The FAL is an inherent part of
the block driver for flash memory restricting the physical access to the memory.
Some slight adaptations are inevitable. Running the FAL besides a specific flash file

Figure 1: Accessing flash memory on Win-
dowsCE

Failsafe Flash File System (F3S) F&S Elektronik Systeme GmbH

system is achieved by a special flag in the spare-page, which causes the FAL to ig-
nore the concerning pages from usage. When declaring the data stored in this area,
this compatibility must be taken into account.

In the course of time and as a consequence of the characteristics of NAND flash
memories, there arise some fragmentation effects within several flash blocks. To
work against these effects, a so called Garbage-Collector (GC) is used that performs
a defragmentation if needed. In this process, valid data is copied to other free loca-
tions to set up deletable blocks that are free for rewriting afterwards. The GC imple-
mented in F3S has two operation modes. On the one hand it scans through flash pe-
riodically to detect fragmentation. On the other hand the GC will be initiated if the free
available space isn’t sufficient to finish the current write operation. There is only freed
as much storage space as is actually needed in this situation to keep latency as short
as possible. This process doesn’t affect transaction safety as data wouldn’t be
changed.

Because of the ageing
process of flash memory
cells, lifetime of these
memories is limited. It is
specified by the manu-
facturer as a maximum
number of delete cycles
of a flash block. To use
the lifetime efficiently, so
called Wear-Leveling
mechanisms are applied.
Thus F3S for example
selects the one free
block for writing that has
been deleted the least so
far.

As mentioned before, the
specific characteristics of
flash memory are addressed. In
contrast to conventional file systems, the number of physical write accesses are re-
duced to a minimum, which mainly improves the transfer rate on read and write op-
erations considerably. Additionally this reduces wearing of flash memory and thereby
enhances the lifetime of the flash memory.

F3S is implemented in C++ using object-oriented methods. As a result of the very
modular architecture, it is portable to other platforms very easily. Thus it is available
for all single board computers of the NetDCU family (WindowsCE 4.2/5/6) from F&S
in the meantime. The F3S file system is maintained and continuously improved. Addi-
tionally F&S offers a qualified and customer-oriented support.

Figure 2: Throuput on write operations

